- LIVE
 Question Paper Discussion

ASSISTANT PROFESSOR IN CIVIL ENGINEERING

Technical Education Dept. (Engg. Colleges)

Category No : 722/2021

ASSISTANT PROFESSOR IN CIVIL ENGG.

 Technical Education Department (Engineering Colleges)| SI.No | Subject | Mark | SI.No | Subject | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Engineering Mechanics | 4 | 7 | Water Resources engineering | 9 |
| 2 | Mechanics of solids | 5 | 8 | Transportation engineering | 15 |
| 3 | Concrete technology | 6 | 9 | Environmental engineering | 15 |
| 4 | Surveying | 5 | 10 | RCC and Steel | 9 |
| 5 | Geotechnical engineering | 17 | 11 | Estimation | 5 |
| 6 | Fluid Mechanics | 5 | 12 | SA | 5 |

ASSISTANT PROFESSOR IN CIVIL ENGG.

 Technical Education Department (Engineering Colleges)1. The number of independent equations to be satisfied for static equilibrium in a space structure is

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

2. The moment of inertia of a triangle of base b and height h about an axis through its centroid is $\mathrm{bh}^{3} / 36$. The moment of inertia about a parallel axis passing through the vertex of the triangle is
A. $b h^{3} / 2$
B. $\quad b h^{3}$
C. $\quad b^{3} / 4$
D. $\quad b h^{3} / 12$

$$
I_{G}=\frac{b h^{3}}{3 G}
$$

Moment of inertia about vertex $=I_{G}+A \bar{h}^{2}$

$$
=\frac{b h^{3}}{36}+\frac{1}{2} \times b \times h \times\left(\frac{2 h}{3}\right)^{2}
$$

$$
\begin{aligned}
= & \frac{b r^{3}}{36}+\frac{b r^{3}}{2 \times 9} \times 4 \\
& =\frac{b r^{3}}{4}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

3. A general system of forces acting on a rigid body can be replaced by:
A. Force vector and couple moment vector at a point
B. Single force vector
C. Single couple moment vector
D. Null vector

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

4. Concurrent forces are those forces whose line of action:
A. Meet at a point
B. Meet at a same plane
C. Are parallel to each other
D. None of the above

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

5. The polar moment of inertia of rectangular section having width 2 cm and depth 6 cm is
A. $30 \mathrm{~cm}^{4}$
B. $50 \mathrm{~cm}^{4}$
C. $40 \mathrm{~cm}^{4}$
D. None

$$
\begin{array}{rlrl}
\text { polar moment of inertia } & =I_{x x}+I_{y y} & b=2 \\
& =\frac{b d^{3}}{12}+\frac{d b^{3}}{12} & d=6 \\
& =\frac{2 \times 6^{3}}{12}+\frac{6 \times 2^{3}}{12} \\
& =\frac{2 \times 6 \times 6 \times 4}{1 / 2}+\frac{6 \times x \times 2 \times 2}{1 / 2} \\
& =36+4=40 \mathrm{~cm}^{4}
\end{array}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

6. A cable 20 mm diameter and 10 m long is pulled by a force of $5000 \pi \mathrm{~N}$. If the modulus of elasticity is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, the elongation is
A. 2 mm
B. $\quad 2.5 \mathrm{~mm}$
C. 5 mm
D. 5.5 mm

$$
\begin{aligned}
\Delta L & =\frac{P L}{A E} \\
& =\frac{500 \phi \pi}{\frac{H^{4}}{4} \times 20^{2} \times 2 \times 10 \times 1000}=2.5 \mathrm{~mm}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

7. If the modulus of elasticity is twice that of shear modulus, then the Poison's ratio of the material is

Given,

$$
\begin{aligned}
& E=2 G \\
& E=2 G(1+\mu) \\
& 2 G=2 G(1+\mu) \\
& 1+\mu=1 \\
& \mu=0
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

8. A homogeneous, simply supported prismatic beam of width B, depth D and span L is subjected to a concentrated load of magnitude P. The load can be placed anywhere along the span of the beam. The maximum flexural stress developed in beam is :
A. $2 \mathrm{PL} / 3 \mathrm{BD}^{2}$
B. $3 P L / 4 B D^{2}$
C. $4 \mathrm{PL} / 3 \mathrm{BD}^{2}$

D. $3 P L / 2 B D^{2}$

$$
\left.\begin{array}{rl}
B M_{\text {max }} & \frac{P L}{4} \quad \text { (Max BM occur whir } \\
\text { lead } 8 \text { @ center) }
\end{array}\right)
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

9. A simply supported beam $A B$ has the bending moment diagram as shown in the following figure. The beam is possibly under the action of following loads

A. Couples of M at C and 2 M at D
B. Couples of 2 M at C and M at D
C. Concentrated loads of M / L at C and $2 M / L$ at D
D.Concentrated loads of M / L at C and couple of $2 M$ at D

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

10. In a section, shear centre is a point through which, if the resultant load passes, the section will not be subjected to any
A. Bending
B. Tension
C. Compression
D. Torsion

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

11. As the cube size increases, the strength of concrete:
A. Decreases
B. Remains constant
C. Increases
D. Insufficient data

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

12. The early high strength of rapid hardening cement is due to its :
A. Increased content of gypsum
B. Burning at high temperature
C. Increased content of cement
D. Higher content of tricalcium silcate

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

13. Los Angeles machine is used to test the aggregate for
A. Crushing strength
B. Impact value
C. Abrasion resistance
D. Water absorption

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

14. According to IS:383, the coarsest sand falls under which grading zone?
A. I
B. II
C. III
D. IV

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

15. Gypsum is typically added in cement to
A. Control setting time
B. Control workability
C. Control heat of hydration
D. Increase strength

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

16. The volume of the cement required for $10 \mathrm{~m}^{3}$ of brickwork in 1: 6 cement mortar is approammately equal to :
A. $3 / 7 \mathrm{~m}^{3}$
B. $3 / 6 \mathrm{~m}^{3}$
C. $3 / 4 \mathrm{~m}^{3}$
D. $3 / 5 \mathrm{~m}^{3}$

$$
\begin{aligned}
\text { Volume of cement } & =10 \times 0.23 \times 1.33 \times \frac{1}{(1+6)} \\
& =\frac{3}{7} \mathrm{~m}^{3}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG.
 Technical Education Department (Engineering Colleges)

17. Estimate the quantity of brick masonry required for construction of a room of $4 \mathrm{~m} \times 3 \mathrm{~m}$ internal dimensions. Thickness of wall should be 250 mm . Two windows of $2 \mathrm{~m} \times 1.5 \mathrm{~m}$ and one door of $1.5 \mathrm{~m} \times 2.2 \mathrm{~m}$ is to be provided to the room. Height between the top of plinth beam and bottom of slab beam should be 4 m :
A. $\quad 9.420 \mathrm{~m}^{3}$
B. $12.675 \mathrm{~m}^{3}$
C. $13.920 \mathrm{~m}^{3}$
D. $15.925 \mathrm{~m}^{3}$

Total Length of wall

$$
=(4.25 \times 2)+(3.25 \times 2)=15 \mathrm{~m}
$$

Volume of windows and door

$$
\begin{aligned}
& =2(2 \times 1.5 \times 0.25)+(1.5 \times 2.2 \times 0.25) \\
& =2.325 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of BW } & =(15 \times 0.25 \times 4)-2.325 \\
& =12.675 \mathrm{~m}^{3}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG.
 Technical Education Department (Engineering Colleges)

18. A test facility setup costs Rs. $10,00,000 /-$ at the time installation and its scrap values is Rs. 50,000 at the end of the useful life in 10 years. Adopting a straight line method for computation of depreciation, estimate the book value of the facility at the end of five years:
A. Rs. $4,75,000$
B. Rs. $5,00,000$
C. Rs. $5,25,000$

D. Rs. 5,75,000

$$
\begin{aligned}
D=\frac{c-s}{n} & =\frac{10,000,00-50,000}{10} \\
& =\frac{950,000}{10}=95000
\end{aligned}
$$

Total depreciation amount for 5 yos

$$
\begin{aligned}
& =95000 \times 5 \\
& =475,000
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Book value } & =10,00,000-475000 \\
& =525000
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

19. A residential building is constructed at a cost of Rs $1,75,000 /-$, The total outgoing including sinking fund is Rs. $11,500 /-$ per annum. If the owner desires 5% return on construction. then the gross monthly rent of the property is :
A. Rs. 20,250.00
B. Rs. 8,750.00
C. Rs. $1,687.50$
D. Rs. 730.00

$$
\begin{aligned}
& \text { Net rent }=\frac{\text { Cost }}{\text { Years purchase }} \\
&=\frac{1,75000}{100 / 5} \\
&=8750 \\
& \text { Gross rent }=\text { Net rent +out goings }=8750+11500 \\
&=20,210 \\
& \text { Gross monthly rent }=\frac{20 \times 250}{2}=16875
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

20. The usable part of liveable area of a building is also known as:
A. Carpet area
B. Circulation area
C. Horizontal circulation area
D. Plinth area

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

21.There are ten instrument stations occupied in succession during a traverse survey. An observer makes equal error in each station, the magnitude of which is 80 in each instance at all the stations. What is the probable error of the final bearing at the end of the traverse?
A. $\pm 10 \delta \theta$
B. $\pm 100(\delta \theta)^{2}$
C. $\pm 10 \sqrt{\delta \theta}$
D. $\pm \delta \theta \sqrt{10}$

ASSISTANT PROFESSOR IN CIVIL ENGG.

 Technical Education Department (Engineering Colleges)22. In a closed traverse with five sides, the error found from the fore bearing and back bearing of the last line is $+2^{\circ}$. The correction to the third line will be :
A. $0^{\circ} 24^{\prime}$
B. $0^{\circ} 48^{\prime}$
C. $1^{\circ} 12^{\prime}$
D. $1^{\circ} 36^{\prime}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

23. Which one of the following statements is correct?
A. In a retrograde vernier ($\mathrm{n}-1$) divisions on the primary scale are divided into n divisions on the vernier scale
B. A double vernier consists of two simple verniers placed end-to-end forming one scale with the zero in the centre
C. In an extended vernier, $(2 n+1)$ primary divisions are divided into n divisions on the vernier
D. In a direct vernier, $(\mathbf{n}+1)$ primary divisions are divided into n equal divisions on the vernier scale

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

24. A surveyor measures a distance between two points on a map of representative fraction 1:100 is 60 m . But later he found that he used a wrong representative fraction of 1:50. What is the correct distance between the two points?
A. 30 m
B. 90 m
C. 45 m
D. 120 m

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

25. The reduced bearing of a 10 m long line in $\mathrm{N} 30^{\circ} \mathrm{E}$. The departure of the line is:
A. 10 m
B. 8.66 m
C. 7.52 m
D. 5.00 m

$$
\begin{aligned}
\text { departure of tive } & =e \sin \theta \\
& =10 \sin 30 \\
& =10 \times 1 / 2 \\
& =5 \mathrm{~m}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

26. The liquid limit of a saturated normally consolidated soil is 50%. The compression index of the for the virgin compression curve will be:
A. 0.36
B. 0.505
C. 0.005
D. 0.705

For undisturbed soil, compression

$$
\begin{aligned}
\text { Index } & =0.009\left(\omega_{L}-10\right) \\
& =0.009(50-10) \\
& =0.36
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

27. The maximum theoretical value of dry density or the saturation dry density at any particular degree of saturation can be computed as:

$$
\begin{array}{ll}
\text { A. } \gamma_{\mathrm{d}} \frac{G \gamma_{w}}{1+e} & \text { B. } \gamma_{\mathrm{d}} \frac{G \gamma_{w}}{1+w G} \\
\text { C. } \gamma_{\mathrm{d}} \frac{(G+e) \gamma_{w}}{1+e} & \text { D. } \gamma_{\mathrm{d}} \frac{G\left(1-\square_{v}\right) \gamma_{w}}{s+w G}
\end{array}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

28. The distance from the surface of the clay particle to the limit of attraction is termed as:
A. Bipolar distance
B. Rigid layer
C. Diffuse Double layer
D. Specific surface

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

29. The terminal velocity of a particle in suspension is given by the equation

$$
\begin{array}{ll}
\text { A. } v=\frac{D^{2}\left(\gamma_{s}-\gamma_{w}\right)}{18 \eta} & \text { B. } v=\frac{18 \eta D^{2}}{\left(\gamma_{s}-\gamma_{w}\right)} \\
\text { C. } v=\sqrt{\frac{18 \eta D^{2}}{\left(\gamma_{s}-\gamma_{w}\right)}} & \text { D. } v=\sqrt{\frac{D^{2}\left(\gamma_{s}-\gamma_{w}\right)}{18 \eta}}
\end{array}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

30. A clay is identified as normal Clay if the activity range is bełween
A. 0:25 to 0.75
B. 0.75 to 1.25
C. 1.25 to 3
D. 0.15 to 0.25

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

31. The permeability in the case of fine grained soil is related to the particle size as
A. $\mathrm{k}=\mathrm{CD}^{2}$
B. $k=C D^{3}$
C. $\mathrm{K}=\frac{C}{D^{2}}$
D. $K=\frac{C}{D^{3}}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

32. At the toe of a dam the foundation soil has a porosity of 42\%. If the specific gravity of the soil solids is 265 . Determine the critical hydraulic gradient:
A. 1.16
B. 0.96
C. 0.86
D. 1.04

$$
\begin{aligned}
e=\frac{n}{1-\eta} & =\frac{42}{100-58} \\
& =72 \%=0.72 \\
i_{c} & =\frac{0-1}{1+e} \\
= & \frac{2.65-1}{1+0.72} \\
= & 0.96
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG.
 Technical Education Department (Engineering Colleges)

33. The vertical stress at a depth ' z ' under the centre of a circular area of diameter ' 2α ' and load intensity ' q ' is given by:

$$
\text { A. } \sigma_{2}=q\left[1-\left\{\frac{1}{1+\left(\frac{a}{z}\right)^{2}}\right\}^{3 / 2}\right] \quad \text { B. } \sigma_{z}=q\left[1-\left\{\frac{1}{1+\left(\frac{2 a}{z}\right)^{2}}\right\}^{3 / 2}\right]
$$

D. $\sigma_{2}=q\left[1-\left\{\frac{1}{1-\left(\frac{a}{z}\right)^{2}}\right\}^{3 / 2}\right]$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

34. A retaining wall of 5 m high retains dry sand with an angle of friction of 30° and saturated unit weight of sand is $20 \mathrm{kN} / \mathrm{m}^{2}$. If the water table rises to the top of the wall, determine effective thrust at rest condition:
A. $125 \mathrm{kN} / \mathrm{m}$
B. $0 \mathrm{kN} / \mathrm{m}$

C. $50 \mathrm{kN} / \mathrm{m}$
D. $100 \mathrm{kN} / \mathrm{m}$

Effective throust@Rest

$$
\begin{aligned}
k_{a} & =1-\sin \phi \\
& =1-0.5 \\
& =0.5
\end{aligned}
$$

$$
\begin{aligned}
P_{0} & =0.5 \times 5 \times 10+10 \times 5 \\
& =25+50 \\
& =75 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Thnest $=1 / 2 \times 75 \times 5$

$$
=187.5 \mathrm{kn} / \mathrm{m}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

35. Point bearing or tip resistance of bored piles in sand is
A. 1/4 to $1 / 5$ of driven pile
B. $1 / 2$ to $1 / 3$ of driven pile
C. 2 to 3 times of driven pale
D. $1 / 6$ to $1 / 8$ of driven pile

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

36. The straight line representing successive state of stress in a test specimen of soil during loading and unloading is
A. Critical path
B. Failure envelope
C. Stress path
D. Drained path

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

37. In order to minimise sampling disturbance the area ratio should be:
A. Zero
B. As high as possible
C. As low as possible
D. Equal to unity

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

38. The ultimate bearing capacity of a strip footing is reduced by 50% when the position ground water table is at:
A. Base of the footing
B. The ground surface
C. A depth $D=1.5 B$
D. A depth $D=0.5 B$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

39. According to Terzaghi the curved surface of sliding in the passive case approximates to a
A. Parabola
B. Hyperbola
C. Friction Circle
D. Logarithmic spiral

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

40. The depth of tension crack in cohesive soil is given by:
A. $\frac{2 C}{\gamma \sqrt{K_{\alpha}}}$
B. $\frac{2 C}{\gamma}$
C. $\frac{4 C}{\gamma \sqrt{K_{\alpha}}}$
D. $\frac{4 C}{\gamma}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

41. A two span continuous beam $A B C$, with uniform flexural rigidity, is provided with fixed support at A and hinged supports at B and C. If $A B=4 \mathrm{~m}$ and $B C=3 \mathrm{~m}$ the distribution factors for $B A$ and $B C$ respectively are:
A. 0.6 and 0.4
B. 0.4 and 0.6
C. 0.5 and 0.5
D. 0.75 and 0.25

Fixed support,

$$
K=\frac{4 E T}{L}
$$

$$
A \hat{3} \frac{B}{N}
$$

$$
c
$$

名
tinged support,

$$
K=\frac{3 E I}{L}
$$

For $A B, K_{A B}=\frac{4 \times E I}{4}=E I$

$$
\text { For } B C=K_{B C}=\frac{3 E T}{3}=E I
$$

$D F$ of $B A=\frac{K_{A B}}{\Sigma k}=\frac{E I}{2 E I}=0.5$
$D F$ of $B C=\frac{K_{B C}}{\sum K}=\underline{0.5}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

42. The sag tie of a roof truss is subjected to
A. Tension
B. Compression
C. Shear
D. None of these

ASSISTANT ENGINER

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

43. The state and kinematic indeterminacy of a single bay single storey portal frame, with fixed base, respectively are
A. 3 and 3
B. 3 and 6
C. 6 and 3
D. 3 and 2

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

44. A three hinged parabolic arch of span 8 m and rise 2 m has a concentrated Load of 50 KN at the crown. The arch will be subjected to a horizontal thrust equal to
A. 25 kN
B. 100 kN
C. 0 kN

$$
\begin{aligned}
& V_{A}=V_{B}=25 \mathrm{kN} \\
& V_{A} \times 4-H_{A} \times 2=0 \\
& H_{A}=\frac{V_{A} \times 4}{2}=\frac{25 \times 4}{2}=50 \mathrm{kN}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

45. Flexibility method is also called
(1) Force method
(2) Compatability method
(3) Equilibrium method
(4) Displacement method
A. All are correct
C. 2 and 3 are correct
B. 1 and 2 are correct
D. 1 and 3 are correct

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

46. The number of plastic hinges required to convert a fixed beam into a mechanism is
A. 4
B. 3
C. 2
D. 1

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

47. A fixed beam $A B$ of span 4 m , is subjected to a concentrated load ' P ' at C such that $A C=C B$. If AC and BC has plastic moment capacities of M_{p} and $2 M_{p}$ respectively, the collapse load is:
A. $4 M_{p}$
B. $3.5 \mathrm{M}_{\mathrm{p}}$

C. $2.5 \mathrm{M}_{\mathrm{p}}$
D. $3 M_{p}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

48. A moving load of 200 kN passes from support A to B in a simply supported beam $A B$ of span 10 m . What is the maximum bending moment developed at a section taken at 6m from A?
A. 480 kNm
B. 240 kNm

C. 360 kNm
D. 180 kNm

$$
\begin{aligned}
B M_{\text {max }} & =\omega z(1-3 / 1) \\
& =200 \times 6\left(1-\frac{6}{10}\right) \\
& =6 \times 0.4 \times 200 \\
& =480 \mathrm{kNm}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

49. Maximum number of 20 mm diameter bolts that can be accommodated in 200 mm wide flat is
A. 500
B. 4
C. 3
D. 2

$$
\begin{aligned}
& 2 \times e+(n-1) p=200 \\
& e=1.5 d^{\prime} \\
& p=2.5 d \\
& d= 20 \mathrm{~mm} \\
& d^{\prime}= d+2=20+2=22 \mathrm{~mm} \\
& e=1.5 \times 22=33 \\
& p=2.5 \times 20=50 \\
& \therefore \quad 2 \times 33+(17-1) \times 50=200 \\
& 66+(\pi-1) 50=200 \\
& \pi-1=2.68 \\
& \pi=3.68 \approx 4
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

50. Prying force is developed in bolted connections due to:
A. Bending
B. Compression
C. Shear
D. Tension

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

51. Loss of pre stress is not directly related to:
A. Creep of concrete
B. Shrinkage of concrete
C. Grade of concrete
D. Slipping of tendons from concrete

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

52.A simply supported beam of span 4 m is subjected to an uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ inclusive of self-weight. If the Limiting moment of resistance of the beam cross section is 40 kNm , the beam is to be designed as:
A. Over reinforced
B. Under reinforced
C. Balanced
D. Doubly reinforced

$$
\begin{aligned}
& r^{20 \mathrm{kN} / \mathrm{m}} \\
& =\frac{\omega l^{2}}{8}=\frac{20 \times 4^{2}}{8}=\frac{20 \times 4 \times 4^{2}}{8 \times 2} \\
& =40 \mathrm{kNm}
\end{aligned}
$$

Given, Mulimit $=40 \mathrm{kNm}$

Hence $M u=$ Mulimit
\therefore It B Balanced section

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

53. The plastic moment capacity of rectangular section 255 kNm . The yield moment of the section in kNm is:
A. 170
B. 150
C. 160
D. 200

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

54. A single bay single storey portal frame is subjected to two point loads at one third span and midspan in the beam and a horizontal Load at beam level. The total number of possible mechanisms is:
A. 2
B. 3

C. 4
D. 5

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

55. Which one of the following is the correct statement about R.C. retaining wall:
A. Toe slab and heel slab are provided with reinforcements at top face
B. Toe slab and heel slab are provided with reinforcement at bottom face
C. Toe slab is provided with reinforcement at bottom face and heel slab at top face
D. Toe slab is provided with reinforcement at top face and heel slab at bottom face

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

56. The discharge q over a weir per unit length depends upon the head h of water over the weir, the height H of the weir and the acceleration due to gravity. Consider the following statements with respect to forming dimensionless constants:
(I) The number of dimensionless variables are 5
(II) The number of variables are 4
(III) The number of fundamental units are 3
(IV) The number of fundamental units are 2
(V) The number of r terms are 3
(VI) The number of x terms are 2

Choose the right combination of the statements from the options given below
A. I, III and V
B. I.IV and VI
C. II, IV and VI
D. II, III and V

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

57.Group-1 contains dimensionless parameters and Group II contains areas of significance for dynamic similarity

Group-I
Group II
(K) Freud's Number
(1) Flow over spillways
(L) Reynold's Number
(2) Flow around submerged bodies
(M) Euler's Number
(3) Capillary movement of water through soils
(N) Weber Number

Choose the correct matching out of the following combinations Codes:

	K	\mathbf{L}	\mathbf{M}	\mathbf{N}
A.	1	2	3	4
B.	1	2	4	3
C.	2	1	3	4
D.	$\mathbf{4}$	3	1	2

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

58.The weight density of honey is $12 \mathrm{kN} / \mathrm{m}^{3}$ and its dynamic viscosity at $20^{\circ} \mathrm{C}$ is $0.50 \mathrm{~kg} / \mathrm{m}$.s Neglecting the weight density of air, the velocity with which air bubble of 1.0 mm diameter will rise in honey at $20^{\circ} \mathrm{C}$ is
A. $1.33 \mathrm{~m} / \mathrm{s}$
B. $\quad 1.33 \mathrm{~mm} / \mathrm{s}$
C. $0.70 \mathrm{~mm} / \mathrm{s}$
D. $0.70 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
V_{T} & =\frac{2 \gamma^{2}(\rho g)}{9 \mu} \\
& =\frac{2}{9} \frac{D^{2}}{4 \mu} \cdot \text { sp. wt } \\
& =\frac{D^{2}}{18} \times \frac{\text { wt.density of liqued }}{\mu_{\text {liquid }}} \\
& =\frac{1 \times 10^{-6}}{18} \times \frac{12 \times 10^{3}}{0.5} \\
& =\frac{24}{18} \times 10^{-3} \\
& =\frac{4}{3} \times 10^{-3} \mathrm{~m} / \mathrm{s} \\
& =1.33 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

59.Out of the following options given below, choose the wrong one with respect to the boundary layer thickness:
A. Increases in the direction of flow
B. Decreases as approach velocity increases
C. Increases as kinematic viscosity increases
D. Not dependent upon the pressure gradient in the direction of flow

ASSISTANT PROFESSOR IN CIVIL ENGG.
 Technical Education Department (Engineering Colleges)

60. Water flows over an obstruction and then flows along a downstream channel as shown in figure given below. The width of the flow is same on both sides of the obstruction. The depth of Dow at section 2-2 is 2 m . Assuming that there is no energy loss between sections $1-1$ and $2-2$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the velocity of flow at section 1-1 is:

A. $\sqrt{ } 10 \mathrm{~m} / \mathrm{s}$
C. $\sqrt{ } 5 \mathrm{~m} / \mathrm{s}$

B. $3 \sqrt{10} \mathrm{~m} / \mathrm{s}$
D. $3 \sqrt{5} \mathrm{~m} / \mathrm{s}$

Specific Energy Same.

$$
\begin{aligned}
\therefore E_{1} & =E_{2} \\
y_{1}+\frac{v_{1}^{2}}{2 g} & =y_{2}+\frac{v_{2}^{2}}{2 g} \\
6+\frac{v_{1}^{2}}{2 g} & =2+\frac{v_{2}^{2}}{2 g} \\
4 & =\frac{v_{2}^{2}-v_{1}^{2}}{2 g} \\
v_{2}^{2}-v_{4}^{2} & =80
\end{aligned}
$$

As per continuity equation,

$$
\begin{aligned}
A_{1} V_{1} & =A_{2} V_{2} \\
b y_{1} v_{1} & =b y_{2} V_{2} \\
6 V_{1} & =2 V_{2} \\
V_{2} & =3 V_{1} \\
9 V_{1}^{2} & -V_{1}^{2}=30 \\
V_{1}^{2} & =10 \\
V_{1} & =\sqrt{10}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

61. List-1 contains various irrigation efficiencies and List-II contains the procedure to calculate it

List-1
(K)Water conveyance efficiency
(L) Water application efficiency
(M) Water storage efficiency
(N)Water use efficiency

List-II

1) Ratio of the quantity of water delivered into the fields from the outlet point of the channel to the water entering in to the channel at its starting point.
(2) Ratio of the water beneficially used to the quantity of water delivered.
(3) Ratio of the water stored in the root zone during irrigation to the water needed in the root zone prior to irrigation.
(4) Ratio of the quantity of water stored into the root zone of the crops to the quantity of water actually delivered into the field.

Choose the correct matching between List-I and List-11 from the following options
Codes:

	K	\mathbf{L}	M	N
A.	1	2	3	$\mathbf{4}$
B.	1	3	4	2
C.	1	4	3	2
D.	4	3	1	2

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

62. Wheat is to be grown in a field having field capacity equal to 30% and the permanent wilting paint equal to 10%. Irrigation water is to be supplied when the moisture content of the soil falls to 20%. The root zone depth is I m , dry weight of soil is $14 \mathrm{kN} / \mathrm{m}^{3}$ and the specific weight of water is $10 \mathrm{kN} / \mathrm{m}^{3}$. The Net Irrigation Requirement (NIR) for the above cultivation is:
A. 28 cm of water
B. 21 cm of water
C. 19.6 cm of water
D. 14 cm of water

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

63. List-1 gives the names for geological formations with respect to its ground water Potentiality. List-II contains examples for the types given in List-I.
List-I:
List-II
(K)Aquifer
(1) Gravel deposits
(L) Aquitard
(2) Clay deposits
(3) Granite rocks
(M) Aquifuge
(4) Clay formations inter bedded with sand layers
(N) Aquiclude Choose the correct matching of List-1 with List-II from the following options Codes:

	K	\mathbf{L}	\mathbf{M}	\mathbf{N}
A.	1	2	3	$\mathbf{4}$
B.	1	4	3	2
C.	$\mathbf{4}$	3	2	1
D.	2	4	1	3

PRE-RECORDED CLASSES

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

64. Full Reservoir Level (FRL)
A. The maximum elevation to which reservoir water surface will rise during normal operating condition
B. The maximum level to which reservoir water will rise during worst design flood
C. The normal operating level in a reservoir
D. Both (B) and (C)

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

65. The following statements are connected with the seepage of water through earthen dams
Choose the false statement from the given
A. The hydrostatic pressure on the phreatic line is equal to zero
B. The flow of water below the phreatic line reduces the weight of the soil
C. The phreatic line represents the top stream line
D. The soil within the capillary fringe experiences reduction in shear strength

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

66. Among the arch dams given below, choose the one which consume least quantity of concrete
A. Constant radius arch dam
B. Constant angle arch dam
C. Shell arch dam
D. Variable radius arch dam

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

67. The following statements are with respect to the canal falls, choose the wrong statement:
A. In Sarda fall, for discharges above 14 Cumecs, trapezoidal crest having upstream side slope of $1: 8$ is provided
B. In Ogee falls there is heavy draw down on the upstream side
C. A trapezoidal notch fall provides a proportionate fall
D. Well type falls are suitable for high drops and very low discharges

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

68. Consider the following statements made with respect to the design of bottom floor Syphon Aqueduct:
I. Uplift due to water table occurs when the bottom slab is not depressed below drainage bed
II. The maximum uplift due to water table occurs when there is no water flowing over the canal
III. The maximum uplift due to water table occurs when water table reaches up to drainage bed level
IV. Maximum uplift due to seepage of water from the canal occurs when both canal and drain are running full
Choose the correct Statement combination from the options given below
A. I, III and IV
B. II, III and IV
C. IV only
D. III only

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

69. From the statements given below, choose the wrong one with respect to Lacey's regime channels
A. Regime theory is not applicable to channels in initial regime
B. Regime theory is applicable to channels which are either in true regime or in final regime
C. Coarser the silt, more nearly the section attains a semi circle
D. Channels flowing through the alluvium has the tendency to assume a semi elliptical section

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

70. A silty soul is having specific gravity (G) equal to 2.60 and porosity equal to 50%. The void ratio for the soil is 1.00 and bulk density is $14 \mathrm{kN} / \mathrm{m}^{3}$. The critical exit gradient for the soil is:
A. $\quad 0.00$
B. $\quad 0.80$
C. 240

OVERSEER CIVIL
PRE-RECORDED CLASSES

$$
\begin{array}{rlr}
i_{c} & =\frac{a-1}{1+e} & =\frac{e=1}{1+1} \\
& =\frac{2 \cdot 6-1}{=} \\
& =\frac{16}{2}=0.8
\end{array}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG.

 Technical Education Department (Engineering Colleges)71. The rate of change of centrifugal acceleration for the design speed of 78 kmph in designing transition curve is:
A. 0.504
B. 0.490
C. 0.495
D. 0.510

$$
\frac{80}{75+V}=\frac{80}{75+78}=0.523
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

72. If ruling gradient is $\mathbf{1}$ in 25 and there is also a horizontal curve of radius 100 m , then compensated grade should be:
A. 3.00%
B. 3.05%
C. 3.90%
D. 3.25%

$$
\left.\left.\begin{array}{rl}
\text { LS }= & \frac{30+R}{R} \\
\frac{75}{R}
\end{array}\right\} \begin{array}{l}
\text { least } \\
\text { value }
\end{array}\right] \begin{aligned}
& G C=\frac{75}{R}=0.75 \\
& C . G= \\
& =\frac{100}{25}-0.75 \\
& \\
& =3.25
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

73. If the tyre pressure is 0.56 and Mpa and wheel load is 40 kN then the radius of tyre contact area is
A. 20.04 cm
B. 15.07 cm
C. 16.07 cm
D. 16.00 cm

$$
\begin{aligned}
\text { Tyre pressure } & =\frac{\text { Wheel load }}{\pi \gamma^{2}} \\
\gamma & =\sqrt{\frac{40 \times 10^{3}}{0.56 \times \pi}} \\
& =150.7 \mathrm{~mm} \\
& =15.07 \mathrm{~cm}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

74. Mixer of coarser filler material with bitumen to remove any internal voids is called as:
A. Modified bitumen
B. Modified asphalt
C. Mastic asphalt
D. Straight-run bitumen

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

75. The saturation flow in a traffic signal for a width of 4.5 to 5.0 m is normally
A. 2250 PCU/Hour
B. 1950 PCU/Hour
C. 2900 PCU/Hour
D. 1890 PCU/Hour

3. Determination of Saturation Flow

$$
s=525 \mathrm{w}
$$

$s=$ saturation flow (PCU/hour)
$>\mathrm{w}=$ width of approach road (metres)

- The above formula is valid for widths from 5.5 to 18 m .

Width w in metres	3.0	3.5	4.0	4.5	5.0	5.5
s (PCU/hour)	1850	1890	1950	2250	2250	2900

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

76. Shape of rotary type intersection which is suited for roads of equal importance carrying equal volumes intersect at equal angles is :
A. Squarish
B. Elliptical
C. Irregular
D. Circular

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

77. If the proposed airport elevation is 400 m and length of runway is 1260 m then the correction for elevation as pre standard is :
A. 1290 m
B. 1300 m
C. 1378 m
D. 1360 m

Altitude correction
Increase in runway length by 7% for every 300 m nुदा above MSL

$$
\begin{aligned}
& \therefore \% \text { correction required }=\frac{7}{300} \times 400 \% \\
& \begin{aligned}
\text { Correction } & =1260 \times \frac{7}{300} \times \frac{400}{100} \\
& =117.6 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { Corrected length } & =1260+1176 \\
& =1378 \mathrm{~m}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG.

 Technical Education Department (Engineering Colleges)78. The reduction of runway length both in landing and takeoff due to head wind component is around :
A. 15%
B. 10%
C. 0.70%
D. 12%

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

79. If the permissible speed is $80 \mathrm{~km} . \mathrm{p} . \mathrm{h}$. with a cant of 10 cm then the length of the transition curve on a B.G. line is :
A. 72 m
B. 44 m
C. 58 m
D. 60 m

$$
\begin{aligned}
L & =0.073 \times C d \times V_{m a x} \\
& =0.073 \times 10 \times 80 \\
& =58.4 \mathrm{~m}
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

80. This sort of points and crossings are not recommended for main lines or heavy fast moving rail traffic lines:
A. Tandems
B. Slips
C. Three throws
D. Gauntlet track

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

81. These signals are provided to furnish special information to the drivers of train are called:
A. Co-acting signal
B. Indicator signal
C. Calling-on signal
D. Routing signal

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

82. Prevent the segment getting twisted out of the line braces are introduced at each joint of the arch segment in tunnel lining is called as
A. Wall plate
B. Laggings
C. Collar braces
D. Posts

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

83. Tunnelling method especially useful over soft strata/water bearing ground is known as :
A. Plenum
B. Steering method
C. Primary lining
D. Ground pressure

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

84. The average height of the waves that are observed over a period, considering the highest one third of the waves in a group of waves is called as :
A. High storm wave
B. Significant wave
C. Low storm wave
D. Average wave

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

85. This force reduces the apparent weight and hence, the marine structures suffer these losses to a great extent unless the foundations are absolutely impervious is known as :
A. External forces
B. Solvent actions of sea water
C. Sea insects
D. Hydrostatic forces

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

86. The total water consumption per capita demand (q) including domestic, industrial, commercial and civic or public use for an average Indian city, as per IS code may be taken as
A. $135 \mathrm{l} / \mathrm{c} / \mathrm{d}$
B. $210 \mathrm{l} / \mathrm{c} / \mathrm{d}$
C. $240 \mathrm{l} / \mathrm{c} / \mathrm{d}$
D. $280 \mathrm{l} / \mathrm{c} / \mathrm{d}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

87. Wholesome water is the one which does not contain :
A. Pathogenic bacteria
B. Suspended matter in quantities harmful to man
C. Dissolved matter in quantities harmful to man
D. All of the above

ASSISTANT PROFESSOR IN CIVIL ENGG.

 Technical Education Department (Engineering Colleges)88. The desirable limit of chlorides in drinking water as per BIS (IS 10500:1991) is :
A. $0.5 \mathrm{mg} / \mathrm{l}$
B. $2.5 \mathrm{mg} / \mathrm{I}$
C. $250 \mathrm{mg} / \mathrm{I}$
D. $100 \mathrm{mg} / \mathrm{I}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

89.Detention Time for a sedimentation tank of a rectangular type (continuous flow rate) is given for a tank, passing a discharge $=\mathbf{Q}$. and have length $=L$, Width $=B$ and Depth $=$ H, as :
A. BLH/Q
B. $Q / B L H$
C. $Q / B L$
D. BL/Q

ASSISTANT PROFESSOR IN CIVIL ENGG.

 Technical Education Department (Engineering Colleges)90. Clariflocculator is \mathbf{a} :
A. Plain sedimentation plant
B. Aeration plant
C. Coagulation and sedimentation plant
D. None of the above

ASSISTANT PROFESSOR IN CIVIL ENGG.
 Technical Education Department (Engineering Colleges)

91. Which of the following chemical compound can be used for dechlorination of water
A. Carbon dioxide
B. Bleaching powder
C. Sulphur dioxide
D. Chloramines

ASSISTANT PROFESSOR IN CIVIL ENGG.

 Technical Education Department (Engineering Colleges)92. A suitable layout for a water supply distribution system for a city of having a system of radial roads emerging from different centres, is :
A. Dead end system
B. Grid Iron system
C. Ring system
D. Radial system

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

93. The self-cleansing velocity $\left(\mathrm{V}_{\mathrm{s}}\right)$ is given as:
A. $\mathrm{V}_{\mathrm{s}}=\sqrt{k d^{\prime}(G-1)}$
B. $\quad V_{\mathrm{s}}=c \cdot \sqrt{k d^{\prime}(G-1)}$
C. $V_{s}=d^{\prime} . \sqrt{k c^{\prime}(G-1)}$
D. $\mathrm{V}_{\mathrm{s}}=\mathrm{k} \cdot \sqrt{c d^{\prime}(G-1)}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

94. Hydraulic mean depth of a circular sewer while running partially full is

$$
\begin{aligned}
& \text { A. } \frac{D}{4}\left(1-\frac{360^{\circ} \sin \alpha}{2 \Pi \alpha}\right) \\
& \text { B. } \frac{D}{8}\left(1-\frac{360^{\circ} \cos \alpha}{2 \Pi \alpha}\right) \\
& \text { C. } \frac{D}{4}\left(1-\frac{360^{\circ} \cos \alpha}{2 \Pi \alpha}\right) \\
& \text { D. } \frac{D}{4}\left(1-\frac{360^{\circ} \tan \alpha}{2 \Pi \alpha}\right)
\end{aligned}
$$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

95. The BOD rate constant $\left(K_{D}\right)$ at the given temperature is:
A. $0.435 \mathrm{~K}_{\mathrm{D}}$
B. $0.431 \mathrm{~K}_{\mathrm{t}}$
C. 0.434 K
D. 0.343 K

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

96. Relative Stability ((S) of a treated sewage effluent is :

> A. $S=100\left[1-(6.30)^{\dagger(37)}\right]$
> B. $S=100\left[1-(0.630)^{\dagger(20)}\right]$
> C. $S=100\left[1-(0.0630)^{\dagger(37)}\right]$
> D. $S=100\left[1-(0.630)^{\dagger(37)}\right]$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

97. The mathematical form of Streeter-Phelps equation is
A. $\mathrm{D}_{\mathrm{f}}=\frac{K_{D} \cdot L}{K_{R}-K_{D}}\left[(\mathbf{1 0})^{-K_{D} \cdot t}-(\mathbf{1 0})^{-K_{R} \cdot t}\right]$
B. $\mathrm{D}_{\mathrm{t}}=\frac{K_{D} \cdot L}{K_{R}-K_{D}}\left[(\mathbf{1 0})^{-K_{D} \cdot t}-(\mathbf{1 0})^{-K_{R} \cdot t}\right]+\left[\mathrm{D}_{\mathbf{0}} \times(\mathbf{1 0})^{-K_{R} \cdot t}\right]$
C. $\mathrm{D}_{\mathrm{f}}=\frac{K_{R} \cdot K_{D}}{K_{D} \cdot L}\left[(\mathbf{1 0})^{-K_{D} . t}-(\mathbf{1 0})^{-K_{R} \cdot t}\right]$
D. $D_{t}=\frac{K_{R}-K_{D}}{K_{D} \cdot L}\left[D_{0} \times(10)^{-K_{D} . t}\right]$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

98. The strokes equation for viscous flow and small sized particles, represented by $R_{e}<0.5$ is:
A. $v_{\mathrm{s}}=\frac{g}{18}(\mathrm{G}-1) \frac{\mathrm{v}}{d^{2}}$
B. $v_{s}=\frac{g}{18}(G-1) \frac{v^{2}}{d^{2}}$
C. $v_{s}=\frac{g}{18}(G-1) \frac{\mathrm{v}^{2}}{d}$
D. $v_{\mathrm{s}}=\frac{g}{18}(G-1) \frac{d^{2}}{v}$

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

99. F/M ratio is:

ASSISTANT PROFESSOR IN CIVIL ENGG. Technical Education Department (Engineering Colleges)

100. Slude Volume Index (SVI) is:
A. $\mathrm{SVI}=\frac{V_{o b}}{X_{o b}}$
B. $\mathrm{SVI}=\frac{X_{o b}}{V_{o b}}$
C. $\mathrm{SVI}=\frac{V_{o b}}{X_{o b}} \times 1000$
D. $\mathrm{SVI}=\frac{X_{o b}}{V_{o b}} \times 1000$

