Α

Question Booklet Alpha Code

Total Number of Questions : 100

Question Booklet SI. No.

Time : 90 Minutes

Maximum Marks : 100

INSTRUCTIONS TO CANDIDATES

- 1. The Question Paper will be given in the form of a Question Booklet. There will be four versions of Question Booklets with Question Booklet Alpha Code viz. **A**, **B**, **C** & **D**.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the Question Booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a Question Booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your Question Booklet is un-numbered, please get it replaced by new Question Booklet with same alpha code.
- 6. The Question Booklet will be sealed at the middle of the right margin. Candidate should not open the Question Booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the Question Booklet supplied to him/her contains all the 100 questions in serial order. The Question Booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the Question Booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

∢

CIVILENGG. COMPETITIVE EXAMS

1.	A 200 mm long steel b If modulus of elasticit A) 200 MPa	ar is tested in tension, y is 200 GPa, what is B) 50 MPa	so t the C)	hat the stress 0.1 M	change in t developec IPa	he le I in t D)	ngth is 0 he bar ? 100 MF	.1 mm. Pa	
2.	The point of contrafle A) Shear force is ma C) Bending moment	xure in a beam is a p ximum changes sign	oint B) D)	where Bend Shea	e ing momen r force is ze	t is r ero	naximun	n	
3.	The breadth of a beat bending moment of 28 the breadth of the se	am of rectangular sec 3.8 Nm and the maximu ction.	tion um s	is hal stress o	f its depth. developed is	If it 200	is subje MPa, co	cted to ompute	
	A) 6 mm	B) 18 mm	C)	12 m	m	D)	24 mm		
4.	A simply supported b rigidity is 2700 kN/m ²	eam of span length 6 ² , what is the deflectio	m ca on at	arries s the ce	9 kN centra entre ?	l load	d. If the f	lexural	
_		b) 13 mm	0)	10 m		U)	1 111111		
5.	Euler's buckling theo	ry is applicable for		Long	oolumno				
	C) Both short and lor	ng columns	D)	None	of the abov	ve			
6.	A circular plate of radiis just at the water surthe water surface.	us R is immersed vert face. Determine the d	tical epth	y in wa of cer	ater such tha htre pressur	at the re of	e topmos the plate	st point below	
	A) 5R/4	D) ITR/O	C)	38/2		D)	417/3		
7.	A turbine develops 48 of the turbine is 80% specific weight of wa A) 20	30 kW power under a , determine the disch ter in the turbine as 10 B) 2 <mark>.0</mark>	net arge 0 kN C)	head c e throu I/m ³ . 1.51	of 30 m. If th ugh the (in i	ne ov m ³ /s D)	verall eff) turbine 1.41	iciency . Take	
8.	In which of the follow	ing flow profiles, the f	low	will be	in supercri	itical	state?		
	A) M_3 , S_3 and M_1	B) M_2 , S_3 and S_2	C)	S ₃ , S	$_2$ and M_3	D)	S ₁ , S ₂ a	and S ₃	
9.	Find the delta for a ca 1200 hectares/cumed	rop, if the duty for a bass	ase	period	l of 120 day	vs is		=XAI	
	A) 86.4 cm	B) 0.864 cm	C)	10 cn	n	D)	1 cm		
10.	The radius of influenceA) Radius of the wellB) Distance from theC) Distance from theD) None of the above	e of a well is the centre of well to the wall of well to the po e	poin int c	t of ze f zero	ro drawdov drawdown	vn			

Α

11.	 The horizontal angle between the true merie A) Dip C) Magnetic Bearing 	idian and a survey line, is known as B) Declination D) Azimuth
12.	 A level is set up and the following reading a Reduced level of the floor is 100.000 m; stareading on the staff held inverted against the Determine the height of the beam above the A) 4.190 m B) 3.895 m 	are obtained : aff reading on the floor is 1.295 m : ne underside of the tee-beam is 2.895 m. ne floor level. C) 2.895 m D) 1.295 m
13.	 A series of offsets in metres were taken from line at intervals of 10 m in the following order 0, 2.80, 3.98, 6.40, 8.63, 8.95, 5.20, 0 Compute the area between the chain line, offsets by Trapezoidal rule. A) 400 m² B) 359.6 m² 	om the chain line to a curved boundary ler : , the curved boundary line and the end C) <u>350 m²</u> D) 361 m ²
14.	. The item of work not includ <mark>ed in plinth</mark> area A) Area of walls at the floor C) Verandah area	B) Area of cantilevered porch D) Room area
15.	 For estimation using the long and short was centre to centre distance between walls and A) One fourth breadth of wall on each side B) Breadth of the wall C) Half breadth of wall on each side D) None of the above 	all method, the length of long wall is the d
16.	 Seasoning of timber is done for A) Increasing moisture content C) Reducing roughness of timber 	B) Increasing strength of timberD) Decreasing moisture content
17.	The percentage of nickel in invar isA) 24B) 36	C) 12 D) 40
18.	. When a brick is cut along its length, making A) King closer B) Bevelled closer	g it two equal halves, then it is called C) Half brick D) Queen closer
19.	 The foundation which consists of a thick reit the whole area in the form of a mat is called A) Grillage foundation C) Combined footing 	einforced cement concrete slab covering d B) Raft foundation D) Strap footing

-4-

2	0.	. The member which is placed horizontally to support common rafter of a sloping roof, isA) PurlinB) StrutC) BattenD) Cleat								roof, is			
2	 The activities of a project, are shown on ba A) Vertical lines B) Dots 							ar charts C) Cro	s by osses	6	D) Horizo	ntal lines	
2	 2. The performance of a specific task in Critical Path Method is known as A) Contract B) Activity C) Dummy D) Event 												
2	23. The principle involved in collection and sampling of particulate matter in which the particles are drawn through a device by deflecting them from their original paths is called									nich the paths is			
		A) Ele C) Gr	ectro avita	static tiona	Preci I Settli	pitation ng			B) Sca D) Filt	atterii ratior	ng n		
 24. Consider the following statements. 1. Specific storage is specific capacity per unit depth of the aquifer. 2. Specific capacity is storage coefficient per unit aquifer depth. 3. Specific capacity is a constant for a given well. Which of the statement are correct 2 													
		A) 2 a	and 3	3		B) 2 and	1		C) 20	nly		D) 3 only	
2	5.	A circ waste A) 3.8	ular wate 59	prima r. The	ary cla e over	rifier proc flow rate is B) 11.28	esse <mark>s a</mark> s 70 m ³	an a ³ /d.	average The diai C) 14.	flow mete 00	of 7000 r of the c	m ³ /d of m larifier is D) 5.64	unicipal
2	6.	A was The s three	ste tre urfac filters	eatme e are s out	ent pla a of ea of serv	nt is desig ach filter is vice for ro	ned to t 100 m ² utine ba	treat ² . W ackw	t 5 m ³ o [.] hat is th /ashing	f raw e loa ?	water. It ding rate	has 15 sano e (in m ³ /dayr	d filters. n ²) with
		A) 14	.4			B) 72			C) 360)		D) 720	
2	7.	Match	n the	follov	ving :								
		SI. N	lo.	L	ist – /	A			List	- B			
		i. NT.D		one c	of Deg	radation		a	. Algae	reap	pears w	hile fungi de	creases
		N HI.	L	one c	T Rec	overy		D	life	ourac	Die to the	developme	nt of aquatic
		iii.	Z	one c	of Activ	ve Decom	position	n Ec	. Appea	aranc	e of usu	al aquatic lif	e
		iv.	Z	one c	of Clea	iner Water	r	d	. Bacte	ria ai	nd flora f	lourishes	
		i	ii	iii	iv								
		A) a	b	С	d								
		B) b	d	С	а								
		C) b	d	а	С								
		D) a	b	d	С								

- 28. How much bleaching powder is needed to chlorinate 10000 litres of water whose chlorine demand is 2 mg/l, assuming that the bleaching powder has 25% available chlorine ?
 - A) 40 g B) 80 g C) 0.0125 g D) 0.025 g
- 29. Which one of the following is the purpose of providing a surge tank in a pipeline carrying water ?
 - A) To store water
 - B) To increase the pressure throughout the pipeline
 - C) To store overflowing water

IS 875 – 5

iv

b

d

d

d

iii

d

С

b

b

- D) To protect the pipeline against water hammer
- 30. The main reinforcement of a RC slab consists of 16 mm bars at 100 mm spacing. It is desired to replace the 16 mm bars by 12 mm bars, then the spacing of 12 mm bars should be
- B) 100 mm C) 180 mm A) 60 mm D) 90 mm 31. Match the following : SI. No. List – A List – B i. IS 3370 a. Code of Practice for Design Loads - Snow Load b. Code of Practice for Design Loads – Special Loads and ii. IS 875 – 4 Load Combinations iii. IS 1343 c. Concrete Structures of Storage of Liquids
 - d. Code of Practice for Prestressed Concrete

32. Maximum permissible slenderness ratio of a member subjected to compressive load

C) 350

D) 400

- A) 180
- 33. The losses in prestress in pre-tensioning system are due to Elastic deformation of concrete
 - 1. Friction

iv.

i.

A) c

B) a

C) a

D) c

ii

а

b

С

a

- 2. Shrinkage and Creep of concrete
- 3. Shrinkage and Elastic deformation

Select the correct answer using the codes given :

B) 250

A) 1, 2 and 3 B) 2 only C) 1 and 2 D) 3 only

- 34. Design of Pins is primarily governed by
 - A) Shear B) Bearing C) Flexure D) All of them
- 35. Which of the following are the general requirements of retaining wall?
 - 1. The factor of safety against sliding should be at least 1.5.
 - 2. The bearing pressure at toe should be less than the bearing capacity of the soil.
 - 3. The resultant of the weight of the wall and the pressure exerted by the retained earth should have an eccentricity not more than one sixth of the base width.
 - A) 1 and 3 B) 1, 2 and 3 C) 1 only D) 1 and 2

36. The development length in compression for a 25 mm diameter deformed bar of grade Fe415 embedded in concrete of grade M30 whose design bond stress is 1.50 N/mm² is

A) 1505 mm B) 94<mark>0 mm C) 755 m</mark>m D) 590 mm

37. The time required for 50% consolidation of a 3 cm thick clay layer (drained at both top and bottom) in the laboratory is 1 minute. Time required for a 3-m-thick clay layer of the same clay, sandwiched between sand layers in the field, under the same pressure increment to reach 25% consolidation

- A) 15000 minutes B) 2500 minutes C) 10000 minutes D) 5000 minutes
- 38. Determine the theoretical maximum dry density in g/ml for a soil sample having specific gravity of 2.50 and optimum moisture content of 10%.
 - A) 2.00 B) 1.50 C) 2.50 D) 1.75
- 39. A fine-grained soil with liquid limit 70% and plastic limit 60% is classified as
 - A) No plastic B) Low plastic C) Medium plastic D) High plastic
- 40. Consider the following statements :
 - 1. The standard penetration test is used for determining the relative density of cohesionless soils.
 - 2. For two soils having the same relative density, SPT N-value will be lower for the soil having higher confining pressure.
 - For SPT N values, dilatancy correction is applied first before the overburden correction.

Which of these statements is/are correct ?

A) 1 only B) 1 and 2 C) 2 and 3 D) 1, 2 and 3

Α

41. Match Column – I and Column – II and choose the correct option :

	Column – I a. Rankine's theory b. Boussinesq's forr c. Coulomb's theory d. Friction circle me A) $a - ii, b - i, c - iv,$ C) $a - iv, b - iii, c - i$	Co i. Total mula ii. Plast iii. Elast thod iv. Slidin d – iii i, d – i	blumn – II stress analysis ic equilibrium ic continuum ng wedge B) a – iv, b – i, c – D) a – ii, b – iii, c –	ii, d — iii - iv, d — i
42.	The ultimate bearing when the water level A) base of footing C) 1.5 times width of	capacity of a strip rises to f foundation	 b footing resting on san B) ground surface D) 1.5 times depth 	d is reduced by half
43.	A pile is driven into h compression strengt A) 235 kN/m ²	omoge <mark>neous</mark> cons h of 50 <mark>kN/m², ther</mark> B) 220 kN/m ²	olidated clay deposit w nultimate tip resistance C) 225 kN/m ²	ith unconfined of the pile will be D) 215 kN/m ²
44.	A vertical summit cu corresponding overta which is greater than A) 130 m	rve is formed by t aking sight distanc overtaking sight d B) 120 m	wo gradients of +4.6% e is 110 m. The length istance to be provided i C) 125 m	and –5.0% and the n of the curve length is D) 121 m
45.	 Consider the followin 1. In rotary intersective vehicles. 2. Traffic rotary is an 3. Rotary intersection Which of these states A) 1 only 	ng statements : tion, conflict points in intersection at gra on is suitable if ther ments is/are correct B) 1 and 2	are reduced by mergin ade type. e are more than seven ct ? C) 2 and 3	g and diverging of intersecting roads. D) 1, 2 and 3
46.	The typical pavement existing cement cond A) Reflection crackin C) Shear failure crac	it failure observed i crete pavements is ng cking	n bituminous overlays p B) Alligator crackir D) Longitudinal cra	provided over ng acking
47.	If the ruling gradient ruling gradient in per A) 0.90	is 1 in 100 for a me centage for a 5° cu B) 0.80	etre gauged railway trac irve in the track will be C) 0.85	ck, the allowable D) 0.75

48.	The maximum h and rock bottom	arbour depth below condition, is	lowest low water for a l	oaded draft of 10 m	
	A) 10.20 m	B) 11.80 m	C) 10.80 m	D) 11.20 m	
49.	The main disady A) Jet blast tow C) Larger gate s	vantage of nose in p ards terminal size	arking configuration of a B) Higher noise D) Gate delays	aircraft is e level	
50.	The town develo	opment stage which	indicates physical deca	y of most portions of	
	A) Juvenile	B) Infantile	C) Senile	D) Mature	
51.	In many states, r of 30 cm depth o and also consid would be	ecommended cross of impounding and p ering practical aspe	sectional area of the cor rovision of 30 cm depth cts of maintaining unde	of flow over waste weir of low rainfall conditions	
	A) 0.25 sq.m	B) 1.0 sq.m	C) 1.5 sq.m	D) 2.0 sq.m	
	the statement isA) Width of terraB) Area lost dueC) Width of terraD) Quantity of e	False ? acing (w) is directly p to bench terracing acing (w) is directly p earth work per hecta	proportional to land slop is directly proportional to proportional to depth of re is directly proportiona	be, S(%) to the land slope S(%) soil, d(m) al to land slope S(%)	
53.	The function of twater into the ch not function as of A) Ogee	the outlet as a comp annel below at safer outlet ? B) SAF	oonent of a spillway is t velocity. Which of its str C) Baffle	o discharge the excess uctural component does D) Stilling basin	
54. CE	 While analysing to check its static context of struct A) Horizontal protocol than maximula B) The overturn moments C) The maximula less than period D) To avoid tensis than b/4 on eriod 	structural stability of pility against failure. ural stability analysis ressure (P) due to w im frictional resistant ing moments should m compressive stress missible compressive sion within the struct either side of middle	of a hydraulic structure, What would be not conserve ater or earth pressure r ce (μ w) d never be exceeded the ss acting normal to the ve stress ture, the eccentricity (e) of the base	there is a requirement rect assessment in the never to be exceeded e limiting balance base (f _{max}) must be should not be more	S

- 55. The slope of a mass of loose dug earth thrown upon horizontal plane gradually slips until it finally attains slope of equilibrium (angle of repose,) whose value changes with nature of soil and its wetness. In which of following given ranges (both dry and wet conditions) angle of repose is applicable to clay soil (in degree) ?
 - A) 26 (wet) and 34 (dry) B) 45 (wet) and 29 (dry)
 - C) 45-49 (wet) and 29 (dry) D) None of the above
- 56. The plotting position method is employed to calculate maximum expected rainfall among the set of data available. The plotting position method namely, P = (((2m 1)/(2n))*100) is referred as _____ method.
 - A) California method

- B) Weibull method
- C) Foster method D) Exceedance method
- 57. The basin lag or time to peak of synthetic hydrograph could be estimated using equation $t_p = (C_t * (L * L_{ca})^{0.3})$ wherein C_t refers to empirical constant, A as catchment area (km²), L as length of longest water course (km) and L_{ca} as length along main stream from the outlet to centroid of the basin. Who has proposed the equation ? A) Linsley B) Snyder C) Sherman D) Clark
- 58. The shape of the drainage basin or watershed which can be expressed as the coefficient or ratio using its area (A) and axial length of the same basin or the watershed (L) is termed as
 - A) Compactness coefficient
- B) Form factor

C) Elongation ratio

- D) Circulatory ratio
- 59. The Dupuit's parabolic equation that yields seepage discharge per unit width through any vertical section of earthen dam which specifies parabolic free surface does have taken into account of
 - A) Entrance and exit conditions of line of seepage
 - B) Case of absence of tail water
 - C) Dependency of slopes of earthen dam on seepage free surface
 - D) Hydraulic gradient between upstream and downstream (tail water) of the earthen dam
- 60. Among the three types of movements envisaged through mechanism of wind erosion which of the following is responsible for transporting the maximum portion of the soil along the surface of the ground ?
 - A) Saltation
 - C) Surface creep

- B) Suspension
- D) Both saltation and suspension combinedly
- 61. The constructed bench terraces are expected to absorb most of the rainfall coming over the area by the soil and very little to go as surface drainage. How do you define such terraces ?
 - A) Hill slope bench terraces
 - C) Water conservation terraces
- B) Irrigated bench terraces
- D) Either of A) or C)

62. The S quan jar gr A) 1.	Symon's rain gau tity is measured i aduated in millim .00	ge consists of a funnel in special measuring g etre. When the jar is fu B) 1.25	and glass bottle as re- lass graduated in spe- ll, it can measure C) 1.50	ceiver. The collected cial measuring glass cm of rain. D) 2.00
63. In the as pe the s	e Universal soil lo er the recommend lope for more th	ss equation, while estin lations (Wishmeier and an 5.0 per cent would	mating the effects of s Smith, 1965) value of be	lope length factor (L) the exponent (m) for
A) 0	.5	B) 0.4	C) 0.6	D) 0.3
64. In the (mm A) T C) D	e expression of per hour) for de ime to peak uration of rainfa	Rational method for sign recurrence interv	estimating peak rate al would be for a dur B) Time of concent D) None of the abo	e of runoff, intensity ation equal to ration ve
65. Estin The i	nates of runoff vereinter	olume from large area φ-Index, f _{ave} -Index a	as are made by use o nd W-Index is given I	f infiltration indices. by
A) W	/ < Φ	B) $\Phi < W$	C) f _{ave} < φ	D) $f_{ave} > \phi$
66. The v being A) C C) W	water that could I g unavailable to apillary water /ilting water	be rem <mark>ained in the</mark> soi the plant is known as	B) Hygroscopic wa D) Gravity water	manent wilting point ter
67. The i	relation between	bulk density (γ_b) and	dry density (γ_d) and	soil water (w) of the
soil s A) γ _t	$c_{\rm p} = \gamma_{\rm d(1 + w)}$	B) $\gamma_{b} = \gamma_{d(1-w)}$	C) $\gamma_d = \gamma_{b(1 - w)}$	D) $\gamma_d = \gamma_{b(1 + w)}$
68. While draw capa A) T	e assessing the r n between cum city of the reserv heir departure b	reservoir storage capa ulative annual inflow a voir is determined whe etween them is maxin	acity at a given locatic and cumulative annu erein num	on using mass curve al demand line, the
B) T	heir departure b	etween them is minim	ium	
CEC) A D) N	verage of the A) one of the above	and B) ENGC	G. COMPE	TITIVE EXAMS
69. While than of cu	e undertaking th 1.0. Which of the t-fill ratio ?	e land levelling operation of the second sec	ations, the cut-fill rati elation factor would be	o is kept at greater affecting the extent
A) S	hrinkage limit	B) Liquid limit	C) Plastic limit	D) All of the above
70. The a earth	albedo (α) being 's surface, its va	the fraction of incom Iue for freshly fallen s	ing solar radiation th snow would be	at gets reflected by
A) L	ess than 0.05	B) 0.2 to 0.5	C) As high as 0.95	D) 0.6 to 0.8

- 71. Which of the statement is not true in case of soil moisture movement ?
 - A) Darcy's law is applicable to saturated soil
 - B) Unsaturated soil-water movement can be called as capillary rise
 - C) Unsaturated flow ceases in clay textured soil relatively at lower tension than sandy oil
 - D) Capillary conductivity would be relatively low at water content lesser than field capacity
- 72. Which of the following soil texture along with sub soil would be considered as good to excellent suitability for irrigation ?
 - A) Clay loam B) Loam C) Clay D) Sandy loam
- 73. In a field test of border strip irrigation method with given size of stream and strip length, the advance and recession curves have been derived. If these two curves are found to be mutually parallel, the unique interpretation or indication of the data would be
 - A) Time of ponding
 - C) Recession flow

- B) Uniform distribution
- D) Elapsed time
- 74. In case of estimation of reference crop evapotranspiration using FAO-Penman-Monteith method, the term psychometric constant (γ) does directly proportional to the following factor
 - A) Ratio of molecular weight of water vapour/dry air
 - B) Latent heat of vaporisation
 - C) Both A) and B)
 - D) Specific heat at constant pressure and atmospheric pressure
- 75. The velocity profile of the flow through open channel indicates the variability of velocity along the depth. In order to determine the mean velocity of the channel (<1 m depth) using current meter, it would be good estimate if measurement be taken at ______ depth (d) with respect to water surface.
 - A) 0.5 d

B) 0.2 d and 0.5 d

C) 0.2 d and 0.8 d

D) 0.5 d and 0.8 d

76. When a soil is dried in an oven at 105°C for at least 12 hours, soil sample reaches to a stage where no water is left and that point would be corresponding roughly with a value of potential force (p^F) in the soil

- A) $p^{F} 7$ B) $p^{F} 14$ C) $p^{F} 1$ D) None of the above
- 77. With equal total head loss, the allowable maximum discharge in a non-uniform drain pipe is higher by a factor of ______ than for uniformly flowing transport pipe.
 - A) Square root of 3 B) 1/3
 - C) 1/(square root of 3) D) 3

- 78. In a drip irrigation system, organic matter or algae can be removed by using the
 - A) Sand media filter B) Screen filter
 - C) Centrifugal separator D) Disc filter

79. The soil sample of a field when tested shows EC of saturation extract with value greater than 4.0 milli mhos/cm at 25°C, ESP value greater than 15 and pH of saturated paste exceeds 8.5. Hence, soil is classified as

- A) Alkali soil B) Saline soil
- C) Saline-alkali soil D) Non saline soil
- 80. A centrifugal pump discharges 0.02 cubic metre of water per second against total head of 40 m when the speed is 1450 rpm. The specific speed (rpm) of the pump is
 - A) 12.89 B) 12.19 C) 47.05 D) None of the above
- 81. Hydraulic resistance (days) is a characteristic of an semi confined aquifer representing upward or downward leakage. If the value of hydraulic resistance attains Zero or near to zero it would indicate as
 - A) Impervious layer

B) Aquifer

C) Semi permeable aquifer

- D) None of the above
- 82. The most economical or the most efficient rectangular channel section can be achieved subjected to condition that
 - A) Depth of flow (d) is half the bottom width
 - B) Its hydraulic radius is equal to half the depth of flow
 - C) Both A) and B)
 - D) Its hydraulic radius is equal to half the bottom width
- 83. In case of Theis Recovery method, the drawdowns in the pumped or nearby observation well are measured at different time intervals during and after the pumping

is stopped. While estimating transmissivity (T) and storage coefficient (S) which of the following statement is not valid ?

- A) Storage coefficient (S) can be determined from the value of drawdown at the time of pump stopped
- B) Residual drawdown (s') pertains to time elapsed for recovery
- C) Residual drawdown (s') pertains to time elapsed for both drawdown and recovery
- D) Transmissivity (T) is directly proportional to drawdown difference per log cycle of ratio of total time for both drawdown and recovery to recovery

84.	 In case of canal flow system, a sudden and at a reach through appropriate functional a In this context, which of the following state A) Flow at the location is classified as rapi B) Passage of water is from subcritical to s C) Considerable dissipation of energy is re D) Water flow transforms from shallow to re 	turbulent but controlled passage of water arrangement is called as hydraulic jump. ment is incorrect ? dly varied flow supercritical state ealised relatively larger depth
85.	 An area of 20 ha needs to be irrigated by a available moisture holding capacity of the zone is 1.0 m. The irrigation needs to be moisture in the root zone is depleted. The 4.0 mm. Water application efficiency is 70 A) 20.0 days B) 11.4 days 	 pump working for 12 hours per day. The soil is 16 cm/m of soil and depth of root done when 50 per cent of available soil peak rate of moisture use by the crop is cent. The depth of irrigation period is C) 26.4 days D) None of the above
86.	. Diesel cycle efficiency is maximum when th A) Increased B) D <mark>ecrease</mark> d	h <mark>e cut-off is</mark> C) Zero D) One
87.	 3-bottom tractor drawn mounted MB ploug A) Landside in front bottom only C) Landside in rear bottom only 	h will have B) Landside in the middle bottom only D) Landside in all the bottoms
88.	 In order to obtain minimum untilled soil the disk harrow in comparison to discs of front A) In the same track of front gang 	disks of the rear gangs in a tandem gangs are mounted
	B) In the middle of two front consecutive gC) At a lesser gang angle than of front garD) None of the above	langs ng
89.	 The ratio of drawbar horsepower to the por A) Mechanical efficiency C) Power ratio 	wer of input to the final drive axle is B) Traction coefficient D) Tractive efficiency
90.	 In badly lodged crop situations, the reel ind to upright crops. A) Loss 	dex should be when compared
91.	A) Less B) More . The clearance between knife section and L A) $0.1 - 0.2 \text{ mm}$ B) $0.2 - 0.3 \text{ mm}$	edger plate is C) $0.3 - 0.5$ mm D) $0.5 - 1.0$ mm
92.	type of nozzle produ	ces spray pattern of 30° forward and
	A) Flat fan nozzleC) Off-centre fan nozzle	B) Even flat fan nozzleD) Twin-orifice fan nozzle

	as compared to a small si	ze equipment.
	A) Less economical	B) More economical
	C) Equally economical	D) None of the above
94.	The seed rate for a particular type of set A) Varying the exposure length of flute B) Reducing or increasing the peripher C) Reducing or increasing the number D) All of the above	eed is adjusted by as ral speed of roller of flutes
95.	type furrow opener is m seeding.	ore suitable for shallow and medium depth
	A) Shovel type	B) Hoe type
	C) Single disc type	D) Double disc type
96.	The property of material related to the a energy is A) Specific heat C) Thermal conductivity	ability to conduct heat and to store heat B) Thermal diffusivity D) Enthalpy
97.	In vertical silos, to achieve reliable mas A) $40^{\circ} - 45^{\circ}$ B) $50^{\circ} - 60^{\circ}$	s flow, the hopper slope angle should be C) 60° – 70° D) 75° – 80°
98.	In Ultra-High-Temperature sterilization, A) 100°C for 3 – 4 sec C) 150°C for 1 – 2 sec	the food is sterilized at B) 120°C for 1 – 2 sec D) 180°C for 3 – 4 sec
99.	Which of the size reduction machineryA) Ball millB) Disc mill	not used in food industry ? C) Jaw crushers D) Hammer mill
100.	Pasteurization of fluid milk will need ab of milk pasteurized in HTST pasteurize A) 0.20 B) 1.80	out kg of steam per kilogram r C) 3.40 D) 5.00

93. Beyond the break-even point, operating larger size of equipment will be

Space for Rough Work

CIVILENGE. COMPETITIVE EXAMS