SUB ENCINEER - CIVIL \& DRAFTSMAN GRADE I

 KSEB \& KWACategory No : 403/2022, 481/2020

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

SI.No	Subject	Marks	SI.No	Subject	Marks
1	Engineering Graphics	6	7	Building Materials	4
2	Engineering Mechanics	6	8	Building Construction	4
	Strength of Materials		9	Concrete Technology	6
			10	Steel Structures	4
4	Fluid Mechanics	18	11	Reinforced Cement Concrete	9
5	Mechanical Engineering	7	12	Estimation	11
6	Surveying	8	13	Construction Management	6

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

1. In third angle projection the object is imagined to be placed
A. Below HP and in front of VP
B. Below HP and behind of VP
C. Above HP and in front of VP
D. Above HP and behind of VP

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

2. Which of the following statement is incorrect about ellipse?
A. The sum of the distances from two focuses and any point on the ellipse is constant.
B. Eccentricity is less than 1.
C. If a plane cuts the cone parallel to its axis, then the section obtained is an ellipse.
D. Mathematical equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA3. The dimension of $A 3$ size drawing sheet is
A. $240 \mathrm{~mm} \times 330 \mathrm{~mm}$
B. $297 \mathrm{~mm} \times 420 \mathrm{~mm}$
C. $148 \mathrm{~mm} \times 210 \mathrm{~mm}$
D. $330 \mathrm{~mm} \times 450 \mathrm{~mm}$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA4. The projection lines in orthographic projection are
A. Parallel to each other
B. Perpendicular to each other
C. Inclined at 45 degrees
D. Inclined at 60 degrees

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA5. The development of a right cylinder of diameter 50 mm and height 60 mm gives a lateral surface of
A. Rhombus of each side 60 mm
B. Square of each side 60 mm
C. Circle of diameter 40 mm
D. Rectangle of length 157 mm and width 60 mm
6. (D)

$$
\begin{aligned}
& =2 \pi \%=\text { Length of Ratangle } \\
& =2 \pi \times 25 \\
& =2 \times 3.14 \times 25 \\
& =157 \mathrm{~mm}
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA6. In isometric projection, true length is converted into isometric length by multiplying it with
A. 0.75
B. 0.92
C. 0.82
D. 0.78

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA7. The maximum frictional force developed in a body when it just starts to slide over another surface is
A. Sliding friction
B. Rolling friction
C. Limiting friction
D. Dynamic friction

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA8. "If a number of coplanar forces acting on a particle are in equilibrium, then the algebraic sum of their moments about any point is equal to the moment of their resultant force about the same point" is
A. Lami's theorem
B. Cauchy's theorem
C. Euler's theorem
D. Varignon's theorem

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA9. Resultant of two forces F and $2 F$ which are at an angle of 60 degree apart is
A. $\sqrt{7} \mathrm{P}$
B. $\sqrt{5} \mathrm{P}$
C. $\sqrt{3} \mathrm{P}$
D. $\sqrt{2} P$
9.(A)

$$
\begin{aligned}
R & =\sqrt{F^{2}+(2 F)^{2}+2 \times F \times 2 F \times \cos 60} \\
& =\sqrt{F^{2}+4 F^{2}+4 F^{2} \times 1 / 2} \\
& =\sqrt{7} F
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA10. The moment (M) of the force (P) acting on the body at a distance R from the axis of rotation is represented by
A. $M=P R \cos \theta$
B. $M=P R \sin \theta$
C. $M=P \times R \cos \theta$
D. $M=P \cdot R \sin \theta$
$10(B)$

$$
M=P R \sin \theta
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA11. From what distance from the base, along the vertical axis, is the centre of gravity of a right circular solid cone?
A. h/2
B. $h / 4$
C. $h / 6$
D. $h / 8$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA12. If $m<2 j-3$, where m is the number of members and j is the number of joints, the frame is a
A. Redundant frame
B. Prefect frame
C. Deficient frame
D. Rigid frame

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA13. The diameter of a circular plate is 20 cm . What will be its radius of gyration?
A. 5 cm
B. 8 cm
C. 10 cm
D. 12.5 cm
13.(A)

$$
\begin{gathered}
k=\sqrt{I / A} \\
I=\frac{\pi D^{4}}{64}, \quad A=\frac{\pi}{4} D^{2}
\end{gathered}
$$

Given,

$$
\begin{gathered}
d=20 \mathrm{~cm} \\
I=\frac{\pi \times 20^{4}}{64}=\underline{7850} \\
A=\frac{\pi}{4} D^{2}=\underline{314} \\
K=\sqrt{\frac{7850}{314}}=\sqrt{25}=5
\end{gathered}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA14. The mass of a solid sphere is $\mathbf{2} \mathbf{~ k g}$ and its radius is 10 cm . Its moment of inertia about its central axis is
A. $\quad 0.005$ kgm 2
B. $\quad 0.006 \mathrm{kgm}^{2}$
C. $\quad 0.008 \mathrm{kgm}^{2}$
D. $\quad 0.01 \mathrm{kgm}^{2}$
15. (c)

$$
\begin{aligned}
I & =\frac{2}{5} m R^{2} \\
& =\frac{2}{5} \times 2 \times \frac{10 \times 10}{100^{2}} \\
& =0.008 \mathrm{kgm}^{2}
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA15. According to perpendicular axis theorem, the moment of inertia about an axis zz, which is perpendicular to $x x$ and $y y$ is
A. $I_{z z}=I_{x x}+I_{y y}$
B. $I_{z z}=I_{x x}-I_{y y}$
C. $I_{z z}=I_{y y}-I_{x x}$
D. $\mathrm{I}_{\mathrm{zz}}=\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{I}_{\mathrm{yy}}}$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA16. Which of the following is not a surface force?
A. Frictional force
B. Viscous force
C. Traction
D. Centrifugal force

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA17. Relation between Young's modulus and Shear modulus is

$$
\begin{array}{ll}
\text { A. } G=\frac{2 E}{(1+v)} & \text { B. } G=\frac{E}{2(1+v)} \\
\text { C. } G=\frac{E}{2(1+2 v)} & \text { D. } G=\frac{E v}{2(1+v)}
\end{array}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

18. The stress developed in a brass rod of diameter 10 mm and length 1 m having a weight 5 kg is
A. $0.625 \mathrm{~N} / \mathrm{mm}^{2}$
B. $\quad 0.064 \mathrm{~N} / \mathrm{mm}^{2}$
C. $0.156 \mathrm{~N} / \mathrm{mm}^{2}$
D. $0.312 \mathrm{~N} / \mathrm{mm}^{2}$
19. (A)

$$
\begin{aligned}
\text { Stress } & =F / A \\
& =\frac{5 \times 9.81}{\pi / 4 \times 10^{2}}=0.625 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA19. Which of the following material does not undergo large deformation before fracture?
A. Copper
B. Aluminum
C. Cast iron
D. Steel

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA20. What is the maximum deflection developed in a simply supported beam of length L, which is subjected to a point load P at its centre?
A. $\frac{P L^{2}}{16 E I}$
B. $\frac{P L^{3}}{48 E I}$
C. $\frac{P L^{3}}{6 E I}$
D. $\frac{P L^{4}}{8 E I}$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA21. What is the angle of inclination of maximum shear stress planes and principal planes?
A. 90°
B. 60°
C. 45°
D. 30°

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA22. For a column, the ratio of least unsupported length and smallest radius of gyration of the cross-sectional area is
A. Euler ratio
B. Poisson's ratio
C. Column ratio
D. Slenderness ratio

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA23. At the point of contraflexure
A. Bending moment is maximum
B. Bending moment changes sign
C. Shear forçe changes sign
D. Shear forçe is maximum

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA
24. The Young's modulus of Steel is around

A. 45 Gpa
B. 70 Gpa
C. 130 Gpa
D. 200 GPa

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA25. The shape of the shear force diagram of a cantilever beam subjected to uniformly distributed load is
A. Rectangle
B. Triangle
C. Parabola
D. Circular arc

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA26. Units of kinematic viscosity of fluid is
A. $\mathrm{m}^{2} / \mathrm{s}^{2}$
B. $\mathrm{m}^{2} / \mathrm{s}$
C. $\mathrm{Ns} / \mathrm{m}^{2}$
D. Nm / s

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA27. As the temperature of a gas increases its viscosity
A. Increases
B. Decreases
C. Remains constant
D. None of the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA28.For Newtonian fluid like water, the velocity gradient and shear force applied are
A. Non-linearly proportional
B. Inversely proportional
C. Linearly proportional
D. Independent

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA29. With respect to pressure measurement, which is the correct correlation?
A. $P(a t m)=P($ gauge $)+P(a b s)$
B. $P($ vacuum $)=P(a t m)+P(a b s)$
C. $P(a b s)=P(a t m)+P($ gauge $)$
D. $P($ gauge $)=P(a t m)-P(a b s)$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA30. What is the relative density of a liquid, which weighs $9 \mathbf{N}$ per liter, when acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$?
A. 0.917
B. 0.9
C. 9.17
D. 9

30 . (A)

$$
\begin{aligned}
S & =\frac{w t \cdot \text { density of liquid }}{\text { wt densith of wates }} \\
& =\frac{9 \times 10^{3}}{10^{3} \times 9.81} \\
& \approx 0.917
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

31. What is the location of center of pressure of a rectangular vertical plate with 4 m width and 6 m height measured from the free surface of water?

Note: the top edge of the plate is coinciding with the water surface.
A. 1 m
B. 2 m
C. 3 m
D. 4 m

31 (D)

$$
\begin{aligned}
h^{*} & =\bar{h}+\frac{I_{G G n}}{A \bar{h}} \\
& =3+\frac{\left(b d^{3} / 12\right)}{A \bar{h}} \\
& =\frac{3+\left(\frac{4 \times 6 \times 6 \times 6}{12}\right)}{4 \times 6 \times 3} \\
& =4 \mathrm{~m} .
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA32. The ratio of inertia force to surface tensional force is

A. Reynolds number
B. Euler number
C. Mach number
D. Weber number

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA33. For a fluid flow, the Bernoulli's equation is obtained from the conservation of
A. Momentum
B. Mass
C. Energy
D. Force

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

34. A Pitot tube is used for the measurement of
A. Fluid velocity
B. Atmospheric pressure
C. Fluid static pressure
D. Flow rate

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA35. Type of turbine through which the pressure of water is a constant
A. Pelton turbine
B. Francis turbine
C. Kaplan turbine
D. Gas turbine

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA36. A Kaplan turbine is
A. Radial flow reaction turbine
B. Axial flow reaction turbine
C. Impulse turbine
D. Cross flow turbine

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA37. In the following list of pumps, which is not a positive displacement pump?
A. Vane pump
B. Gear pump
C. Centrifugal pump
D. Lobe pump

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA38. A jet of water with velocity $15 \mathrm{~m} / \mathrm{s}$ hits a moving vertical plate with $5 \mathrm{~m} / \mathrm{s}$. What is the force exerted by the jet, if its cross sectional area is $1 \mathrm{~cm}^{2}$?
A. 1 N
B. 10 N
C. 10 kN
D. 100 KN
39. (B)

$$
\begin{aligned}
F & =\rho_{A}(v-u)^{2} \\
& =10^{3} \times 1 \times 10^{-4} \times 10^{2} \\
& =10 \mathrm{~N}
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA39. Specific speed of a turbine is expressed as
A. $N \sqrt{ } \mathrm{Q} / \mathrm{H}^{3 / 4}$
B. $N \sqrt{ } \operatorname{P} / H^{3 / 4}$
C. $N \sqrt{ } \mathrm{P} / \mathrm{H}^{5 / 4}$
D. $N \sqrt{ } \mathcal{Q} / H^{5 / 4}$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA40. Estimate the specific speed of a centrifugal pump running at 100 rpm working against a head of 1 m with a flow rate of $100 \mathrm{~m}^{3 / \mathrm{s}}$.
A. 1000 rpm
B. 100 rpm
C. 10 rpm
D. 1 rpm
40.(A)

$$
N_{s}=\frac{N \sqrt{Q}}{H^{3 / 4}}
$$

Given,

$$
\begin{aligned}
N & =100 \mathrm{rpm} \\
Q & =100 \mathrm{~m} / \mathrm{s} \\
H & =1 \mathrm{~m} \\
N_{S} & =\underbrace{1}_{100 \sqrt{100}} \\
& =1000 \mathrm{gzpm}
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA41. A draft tube is not essential for the working of a
A. Propeller turbine
B. Kaplan furbine
C. Francis turbine
D. Pelton turbine

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA42. What is the range of coefficient of discharge $\left(C_{d}\right)$ for a venturimeter?
A. 0.5-0.6
B. 0.6-0.7
C. 0.7-0.8
D. 0.9-1.0

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA43. For a cube completely immersed in water, which of the following statements is correct?
A. Centre of gravity and centre of buoyancy coincides
B. Centre of gravity lies above centre of buoyancy
C. Centre of gravity lies below centre of buoyancy
D. Cannot determine

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

44. Which of the following statements are true for an isolated system?
i. The total energy of the system always remains zero
ii. The total energy is constant.
iii. The entropy of the system always remains constant.
iv. The entropy of the systems will be greater than or equal to zero.
A. i and iv
B. ii and iv
C. None of the above
D. All the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA45. For a closed non-flow thermodynamic system, which of the following property relation is valid?
A. TdS = dH - Vdp
B. $\mathrm{TdS}=\mathrm{dH}+\mathrm{Vdp}$
C. $\mathrm{TdS}=\mathrm{dQ}+\mathrm{pdV}$
D. $\mathrm{TdS}=-\mathrm{dH}-\mathrm{Vdp}$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA46. If a four stroke cycle diesel engine running at 1000 rpm has a displacement of 20 litres and brake mean effective pressure of 6 bar, what will be its brake power?
A. 200 kW
B. 100 kW
C. 1000 kW
D. 2000 kW

$$
N=1000 \mathrm{lpm}
$$

Displacemat $=20$ litre
Mean effeetive pr: b bar

Bp. Pbm $\times V_{s} \times$ Noiof Cycle/sce

$$
\begin{aligned}
\left(6 \times 10^{5}\right) \times \frac{26}{1006} \times \frac{1000}{2 \times 60} 3 & =\frac{10^{5} \mathrm{~W}}{100 \mathrm{KW}}
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

47. In a SI engine, the detonation tendency increases with which of the following?
i. Increase in compression ratio
ii. Decrease in air inlet temperature.
iii. Increase in load on the engine.
iv. Increase in engine speed.
A. i, ii and iv
B. ii, ili and iv
C. i, iii and iv
D. i, ii and iii

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

48. An IC engine working between temperature limits of $477^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ consumes 1 kg of fuel per hour and produces an output power of 4.8 kW . If the heat value of the fuel is 43200 $\mathrm{kJ} / \mathrm{kg}$, what will be the actual efficiency and theoretical maximum efficiency of the engine?
A. $\mathbf{4 0 \%}$ and 94.34%
B. 60% and 40%
C. $\mathbf{9 4 . 3 4 \%}$ and 40%
D. 40% and 60%
49. (D) $\eta_{\max }=1-\frac{T_{L}}{T_{H}}$

Given,

$$
\begin{aligned}
& T_{L}=27^{\circ} \mathrm{C}=300 \mathrm{~K} \\
& T_{H}=477^{\circ} \mathrm{C}=750 \mathrm{~K} \\
& \therefore \quad \eta_{\text {max }}=1-\frac{300}{750} \\
&=60 \%
\end{aligned}
$$

$$
\begin{aligned}
\eta=\frac{W_{\text {output }}}{Q_{\text {input }}} & =\frac{W_{\text {output }}}{m_{f} \times F \cdot V} \\
& =\frac{4 \cdot 8}{1 \times\left(\frac{4.3200}{3600}\right)}=\frac{36 \times 4.8}{432} \\
& =40 \%
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

49. For ideal Otto cycle, which of the following statement is true?
A. The heat addition takes place at constant pressure
B. The heat addition takes place at constant volume
C. The heat addition takes place at constant temperature
D. The heat addition takes place partially at constant pressure and partially at constant volume

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

50. If the solar irradiance is 1 sun, what will be the power output from a solar panel with $2 \mathrm{~m}^{2}$ area and conversion efficiency of 20% ?
A. 400 W
B. 400 kW
C. 2000 W
D. 2000 kW

50 . (A)

$$
\begin{aligned}
\text { Pouter Output } & =\text { Area } \times \text { Irradiance } \times \text { Efficiency } \\
& =2 \times 1000 \times 0.2 \\
& =400 \text { Watts }
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA51. The error which occurs while conducting the survey from whole to part and part to whole is
A. In whole to part error is localized and in part to whole it is accumulated
B. Same
C. In whole to part error is accumulated and in part to whole it is localized
D. None of the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

52. Reciprocal levelling eliminates the effect of
53. Error due to Earth's curvature
54. Error due to atmospheric refraction
55. Mistake in levelling staff reading
56. Error due to line of collimation.
A. 1, 2 and 4
B. 1, 3 and 4
C. 2, 3 and 4
D. 1,2 and 3

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA53. The type of surveying in which the curvature of the earth is taken into account is called
A. Topographical surveying
B. Contour surveying
C. Plane surveying
D. Geodetic surveying

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA54. Which GPS surveying method is used to establish control points?
A. Static method
B. Control method
C. Kinematic method
D. Absolute method

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

55. The process of determining the elevations of stations from vertical angles and geodetic lengths at mean sea level is known as

A. Hypsometry
B. Trigonometric levelling
C. Triangulation
D. Levelling

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA56. Index frame of theodolite is shaped
A. T
B. A
C. U
D. V

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

57. The representation of general topography of a very steep terrain is possible only by
A. Giving spot levels at large interval
B. Drawing contours at large interval
C. Drawing contours at small interval
D. Giving spot levels to salient features at close interval

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

58. Grade of vertical curve can be expressed in terms of
A. Percentage
B. Ratio
C. Both A and B
D. None of the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA59. Which is not a type of building as per NBC?
A. Domestic
B. Mercantile
C. Industrial
D. Storage

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA60. Height of habitable room measured from the surface of the floor to the lowest point of ceiling shall not be less than
A. 2 m
B. 2.5 m
C. 2.75 m
D. 3 m

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA61. The covered area of the usable rooms at any floor level (excluding the area of the wall) is
A. Plinth area
B. Covered area
C. Carpet area
D. Building area

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA62. Which among the following step is used for changing the direction of a stair?
A. Flight
B. Nosing
C. Landing
D. Winder

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA63. Horizontal construction joints in concrete walls are generally provided at
A. Floor level
B. Soffit level
C. Window sill level
D. All the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA64. Rolled steel joist means
A. Rolled steel I section
B. Rolled steel angle section
C. Rolled steel channel section
D. Rolled steel T section

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

65. Why are bricks soaked in water before using in brick masonry?
A. For reducing efflorescence
B. For preventing depletion of moisture from mortar
C. For removing dust and dirt
D. For reducing air voids

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

66. The main objective of compaction of concrete is
A. To provide intimate contact between the concrete and embedded materials
B. To remove the air voids
C. To increase the density of concrete
D. All the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA67. The diameter of longitudinal bars of a column should never be less than
A. 16 mm
B. 12 mm
C. 10 mm
D. 20 mm

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA68. In M20 concrete mix, numeric 20 represents the
A. 7 days compressive strength
B. 28 days compressive strength
C. 14 days compressive strength
D. 7 days tensile strength

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA69. Which Indian standard code is used for ductile detailing of reinforced concrete structures subjected to seismic forces?
A. IS 456
B. IS 800
C. IS 1893
D. IS 13920

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA70. As per IS 399 (1963) : Classification of Commercial Timbers and their Zonal Distribution, X, Y and Z classification of timber is based on
A. Availability
B. Durability
C. Treatability
D. All the above

II East Zone Assam, Manipur, Tripura, index of availability, all such sources have been West Bengal, Bihar, Orissa, $\begin{aligned} & \text { taken into consideration. Every care has been } \\ & \text { Sikim, Bhutan, Andamans, } \\ & \text { taken in arriving at an accurate estimate }\end{aligned}$ Sikkim, Bhutan, Andamans,
North East Frontier Agency and Nagaland
III Centre Zone
Madhya Pradesh, Vidharbha areas of Maharashtha Stat
and the north east and the north east part of
Andhra Pradesh (Godavari
delta area) Andhra Pra
delta area)
IV West Zone
Maharashtra State
Vidharbha areas), (except
Gujarat and north west part of
Mysore

V South Zone Madras, Andhra Pradesh (except the Godavari delta
area), Kerala and Mysore area), Kerala and Mysore
(except north west part)

4. Classification

 4.0 Tables I, II, III, IV and V list respectively im-portant timbers commercially available in the five
zones described under 3 and zones described under $\mathbf{3}$ and classified according
to their uses given under $\mathbf{2}$. Against each species of thimber, the availability in that tonc, average
the weight and the range of weight of airseasaned
timber in $\mathrm{kg} / \mathrm{m}^{3}$ and $1 \mathrm{~b} / \mathrm{ft}^{3}$, durability, treatability, imber in $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{lb}^{2} / \mathrm{ft}^{3}$, durability, treatabiity,
refractoriness to air seasoning and strength co efficient are given.
4.1 Availability - The availability of timbers is
categorized under three classes indicated below:

X : Most common, $1415 \mathrm{~m}^{3}$ (1 1000 tonnes) and
more per year
: Common, $355 \mathrm{~m}^{3}$ (250 tonnes) to $1415 \mathrm{~m}^{3}$
: Less common, below $355 \mathrm{~m}^{\mathbf{2}}$ (250 tonnes) per year
The figures are largely based on the informatio supplied by various forest departments. It shoul be explained here that these figures. refer to the quantities that could be made available every year, although due to various difficultecs connectc actual quantities commercially available at present
may be far too small. For instance, Indian oaks, may be far too small. For instance, Indian oaks,
birch, maple, walnut, ash, etc, which occur in hill forests, are so costly and difficult to extract that their exploitation is possible only for such purposes
where the cost of extraction is justified by the use where the cost of extraction is justified by the use
in view. Walnut and maple trees are converted
in the forest into rifle in the forest into rifle half-wroughts, which are
carried by men, mules and lorries over long discarried by men, mules and lorries over long dis-
tances, as there are no suitable substitutes for them among the timbers available in the plains. With the building of new hill roads and improvement of old ones, it is hoped that these forests will
gradually become important sources of timber supply to the country. Then, again, there are canal banks, tea gardens, etc, such as mango,
taken in arriving at an accurate estimate o
availability, but it may be availability, but it may be stressed that it is not reliable data on the subject.
4.2 Weight Per Cubic Metre (or Cubic Foot) The figures for the average weight and the range
of weights per cubic metre (ft) at moisture content for all the timbers have bee supplied by the Forest Research Institute and
Colleges, Dehra Dun and are based tenerall Colleges, Dehra Dun and are based generally
on a very large number of samples of each specie in a particular zone or from other orenes. The
yange of weights is given below the average range of weights is given below the average weigh
in parentheses. The density of a timber often in parentheses. The density of a timber often
varies according to the climatic and soil condition of the place where a particular species is grown, ad cven in a single trec may vary from the botion,
to the top, and from the centre to the periphery to the top, and from the centre to the periphery
of the bole. The figures given here represent a of the bole. The figures given here represent
fair range for the species sut in individual cases,
slight deviations on either side are possible. 4.3 Durability - The figures given here are based on the 'graveyard' tests carried out in the
open, at the Forest Research Institute and Colleges open, at the Forest Research Institute and collezes,
Dehra Dun, in which test specimens of size $24 \times 2 \times 2$ in. of heartwood were buried in the ground to half their lengths. The condition of the specimens
was examined at frequent intervals and from these was examined at frequent intervals and from thes
observations, their average useful life has been calculated. The timbers are classified for durabi-
lity according to the average life of these te:t
specimens as ens as follows

Timbers having average life of 120 months and over
Moderate :
Timbers having average life of les or over
Low
Thmbers have average life of less
It is necessary to explain here that the actual life of a timber in use depends largely upon the
local conditions of soil and climate. The classifi cation made in this standard, therefore, serve
merely to give a comparative value of the durability of various to timbers when used in exposed stituations subject to atmospheric variations, and in contact
with the ground.
4.4 Treatability - The classification is based o experiments carried out at the Forest Research
Institute and Colleges, Dehra Dun, on the pressure rreatments of various timbers with creosote-crude oil mixtures and with water-soluble preservatives,
under conditions of freatment which are normally under conditions of treatment which are normally
used for these processes. The classification should, therefore, be taken to represent approximately
the degree of resistance offered by the heartwood of a species to the penetration of the preservative
fluid under working pressure of $10.5 \mathrm{~kg} / \mathrm{cm}^{2}$. In

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA71. Which of the following is the example of shallow foundation?
A. Mat foundation
B. Pile foundation
C. Pier foundation
D. All the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA72. Iron with least carbon content is
A. Wrought iron
B. Cast iron
C. Mild steel
D. Direct reduced iron

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

73. The preparation of surface of stone to obtain plain edges or to obtain stones of required size and shape is called
A. Blasting of stones
B. Seasoning of stones
C. Dressing of stones
D. Quarrying of stones

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

74. Which of this IS code provides specification for 53 grade OPC cement?
A. IS 8112: 1989
B. IS 8041: 1990
C. IS 12269: 1987
D. IS 1489

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

75. Which of the following statement is correct about Portland Pozolana Cement (PPC)?
A. The long term strength of PPC is less and it has reduced heat of hydration and permeability.
B. The long term strength of PPC is more and it has enhanced heat of hydration and permeability.
C. The long term strength of PPC is more and it has reduced heat of hydration and permeability.
D. The long term strength of PPC is less and it has reduced heat of hydration and enhanced permeability.

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

76. The water quantity to be added for testing the compressive strength of cement is(where $P=$ Percentage of water required for normal consistency paste,W1 = Weight of cement and W2 = Weight of sand.)
A. $\left(P_{3}+4\right) \%(W 1+W 2)$
B. $\left(P_{4}+2\right) \%(W 1+W 2)$
C. $\left(P_{4}+3\right) \%(W 1+W 2)$
D. $\left(P_{2}+3\right) \%(W 1+W 2)$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA77. The shape of the aggregate that is having maximum void ratio
A. Rounded
B. Flaky
C. Irregular
D. Angular

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

78. As per IS 283-1970 the aggregate impact value shall not exceed
A. 45% by weight for aggregate used for concrete in wearing surface and 30% for concrete other than wearing surface.
B. 35% by weight for aggregate used for concrete in wearing surface and 45% for concrete other than wearing surface.
C. 30% by weight for aggregate used for concrete in wearing surface and 45% for concrete other than wearing surface.
D. 30% by weight for aggregate used for concrete in wearing surface and 40% for concrete other than wearing surface

IS : 383-1970

3.2 Deleterious Materials - Aggregates shall not contain any harmfu material, such as pyrites, coal, lignite, mica, shale or similar laminated material, clay, alkali, soft fragments, sea shells and organic impurities in such quantity as to alfect the strength or durability of the concrete Aggrcgates to be used for reinforced concrete shall not contain any material liable to attack the steel rejnforcement. Aggregates which are
chemically reactive with alkalies of cement are harmful as cracking of concrete may take place. NotR - Aggregates petrographically similar to known reactive types or aggrecates
which, on the basis of service history or laboratory experiments, are suspected to have
reactive tendency should be avoided or used only with cements of low alkalies f not
 Use of pozzolanic cement and certain pozzulanic admixtures may be helpfil in controling alkali aggregate reaction
3.2.1 Limits of Deleterions Materials - The maximum quantity of deleterious materials shall not excecd the limits specified in Table 1 when tested in accordance with IS : 2386-1963. However, the engineer-in-charg at his discretion, may relax some of the limits as a result of some furthe tests and evidence of satisfactory performance of the aggregates.
3.3 Aggregate Crushing Value - The aggrcgate crushing value, when determined in accordance with IS:2386 (Part IV)-1963 shall not exceed 45 percent for aggregate used for concrete other than for ws aring surf? and 30 percent for concrete for wearing surfaces, suc ${ }^{1}$

Aggregates Impact Value - As an alternative to 0.0 ue aggre, mpact value may be determined in accordance with the method specifie 5. 2386 Part IV 1963 . The aggregate impact value shall not exceed 5 percent by weight for aggregates used inr concrete other than fo urfaces, such as runways, roads and pavements.
 the purchaser and the supprier, 963 using Los Angeles machine, shall not exceed the following values:
a) For aggregates to be used in

30 percent
concrete for wearing surfaces
b) For aggregates to be used in

50 percent other concrete
3.6 Soundness of Aggregate - For concrete liable to be exposed the action of frost, coarse and fine aggregates shall pass a sodium or magnesium est specified in IS the limits being set by agreement between the purchaser and the supplier

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA79. The suggested range of slump value for pumpable concrete
A. 50-100
B. 75-100D
C. 25-75
D. 100-150

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA80. A test is done to assess the quality of concrete by ultrasonic pulse velocity method as per IS: 13311 (Part 1) - 1992. The Pulse Velocity by Cross Probing obtained is $4 \mathrm{~km} / \mathrm{sec}$. Then in which concrete quality grading is it belongs to ?
A. Poor
B. Doubtful
C. Excellent
D. Good

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

81. Which of the following load combination is used for limit state design of reinforced concrete structures under ultimate limit state?
A. $1 \mathrm{DL}+1 \mathrm{LL}$
B. $1.5 \mathrm{DL}+1.5 \mathrm{LL}$
C. $1 \mathrm{DL}+1.5 \mathrm{LL}$
D. 0.9 DL + 1 LL

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA82. The value for strain of tension steel (cu) for a steel rod with f_{y} $=500 \mathrm{MPa}$ and $\mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{Mpa}$
A. 0.0031
B. 0.0052
C. 0.0042
D. 0.0033

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA83. What is the value for compressive force obtained from the stress block given in IS 456-2000 for an R. C. C. beam with f_{ck} (characteristic compressive strength) $=20 \mathrm{MPa}, \mathrm{x}_{\mathrm{u}}=200 \mathrm{~mm}$ and width of beam b=300 mm ?
A. 432 KN
B. 554 KN
C. 624 KN
D. 724 KN
83.(A)

$$
\begin{aligned}
\text { Compressive force } & =0.36 \times f_{c k} \times b \times u \\
& =0.36 \times 20 \times 200 \times 300 \\
& =432 \mathrm{kN}
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA84. The limiting values of the depth of neutral axis, based on the assumptions given in IS 456 for a grade of steel of 500 is

$$
\begin{aligned}
& \text { A. } 0.48 \mathrm{~d} \\
& \text { B. } 0.46 \mathrm{~d} \\
& \text { C. } 0.53 \mathrm{~d} \\
& \text { D. } 0.34 \mathrm{~d}
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA85. As per IS 456-2000 the span to effective depth ratio of continuous slab of shorter spans (up to 3.5 m) with mild steel reinforcement and loading class up to $3 \mathrm{KN} / \mathrm{mm}^{2}$ is
A. 35
B. 45
C. 50
D. 40

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA86. The live load for design of staircase for public building is to be taken as per IS 875
A. $3 \mathrm{KN} / \mathrm{mm}^{2}$
B. $2 \mathrm{KN} / \mathrm{mm}^{2}$
C. $5 \mathrm{KN} / \mathrm{mm}^{2}$
D. $6 \mathrm{KN} / \mathrm{mm}^{2}$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA87. Unit of measurement of laying wearing course including consolidation in pavement construction
A. cubic metre
B. square metre
C. cubic metre per metre depth
D. Metre

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA88. The estimate prepared for the valuation of a property is
A. preliminary estimate
B. detailed estimate
C. approximate quantity method estimates
D. cubic rate estimate

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA89. The property due to its size, shape, location fetches more value, it is known as
A. book value
B. potential value
C. accommodation value
D. monopoly value

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

90. Depreciation of a property is equal to annual sinking plus the interest on the fund for that year is applicable in
A. Straight line method
B. Sinking fund method
C. Quantity survey method
D. All the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA91. The present value of interest in a property having an annual income of Rs. 100 for a year calculated at 10% is
A. 379.08
B. 325.68
C. 355.38
D. 310.88

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA92. For concreting, no deductions shall be made for
A. ends of beams, posts, girders, purlins upto 500 sq. m in cross section
B. opening upto 0.1 sq. m
C. volume occupied by reinforcement
D. all the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA93.For obtaining environmental lead for sandy track, lead is multiplied by
A. 1.0
B. 1.1
C. 1.3
D. 1.4

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI

 KSEB \& KWA94. in construction, contractor's profit is included in
A. Work charged establishments
B. Specifications
C. Unit rate of items
D. All the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

95. Interfering float is the difference between
A. Total float and free float
B. Total float and independent float
C. Free float and independent float
D. None of the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA96. Security deposit submitted for a work is
A. 2% of contract value
B. 5% of contract value
C. 10% of contract value
D. None of the above

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

97. In time cost trade off, the crashing of activities along the critical path using Critical Path Method of network analysis, is starting with the activity having
A. shortest duration
B. least cost slope
C. Iongest duration
D. highest cost slope

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I KSEB \& KWA

98. The expected time of an activity having optimistic, pessimistic and most likely time as $1,3,8$ days is
A. 6
B. 3.5
C. 18
D. 10.5
99. (A)

$$
\begin{aligned}
t_{e} & =\frac{t_{0}+4 t_{n}+t_{p}}{6} \\
& =\frac{1+(4 \times 8)+3}{6} \\
& =\frac{36}{6} \\
& =6
\end{aligned}
$$

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADE I

 KSEB \& KWA99. The type of contract which is usually followed by railway department for construction IS
A. lumpsum
B. percentage rate
C. item rate
D. piece work

 PWD/IRRIGATION - OVERSEER GR.III TMaN Wro... TRACEROVERSEER GRADE III-KWA

 GATE 202 I/2022

 Q@QQQ@QQ@QQQQ@QQQu
(2)

SUB ENGINEER (CIVIL) \& DRAFTSMAN GRADEI KSEB \& KWA

100. The type of tender system preferred in the work of highly technical nature in which accuracy is more important than cost of the work is
A. open tender
B. limited tender
C. Negotiated tender
D. single tender

A COMPREHENSIVE MATERIAL for COMPREHENSIVE MATERIAL
GATE CIVIL ENGMEERNG This book is a comprehensive Compiation of chapter wise theneory
concerts, detailed solutions of con
conestions. detatailed solutions of
queted with latest syllabus of AcTi examntretis bookisas sure shot for

A COMPLETE GUIDE FOR Lateral entry test Must-Buy bundle for all engineering AMust-By buncle for al engineerin preparations for B. Tech lateral enti)
examination. This book comprises
of heory portions \& $1000+$ puestion with their detailed explanation
coveringthe entire syllabus ofLET.

CIVIL ENGINEERING MCO BOOK COMPREHENSIVE COMPILATION OF MC Get the lar Get the largest Compilation of Civil
Engineering MCO with Solution. The book

SRO-CIVIL ENGINEERING PREVIOUS YEAR DUESTION PAPERS WITH DETALLED SOLUTION
uestion papers with detailed explanation and Interview questions
conducted by the recruitment wing of conducted by the recruitment
SRO. Avery helpful rsuruef for
evelexams in Civil n noineering.

A COMPLETE GUIDE FOR LATERAL ENTRY TEST This book is a comprehensive
Compilation of chapter wise theory Compilation of champer wise theory
concents, detailet solut ine concepts, detailed solutions of
questions. Curated with latest sylabus of GATE Exam, this book is a sure shot for all civil engineering exam
preaparations.

OUICK REFERENCE BOOK FO CIVIL ENGINEERING EXAMS A quick reference book for Civil edition of our best seller book edititon of our best seller book.
Oustions and answers are given from all subjects ins civiril Engine givering,
arranged chapterwise.

NIMI TEST SERIES
 sean

Questions from NIMI Textbook are
mostly expected in overseer exars.
Practice the questions in NIMI Book \&
Practice the questions in NIMI Book a
analyse your performance level online. SGAN Benct

