

# $9497498415|16| 17$ 

ANSWER KEY

## QUIZ NO: 809

## TOPIC: MECHANICS

## DATE: 21/03/2024

1. Calculate the force that is required to slide a mass of 980 kg on a guide, when the coefficient of friction between the surfaces is 0.09
[A] 11 kg
[B] 72 kg
[C] 88 kg
[D] 96 kg
Answer: C
2. What is the direction of frictional force against a motional object?
[A] Inclined to the object
[B] Opposite to the object
[C] Parallel to the object
[D] Perpendicular to the object
Answer: B

Centre for Civil Engg. Competifive Exams

## $9497498415|16| 17$

3. Which force is directly proportional to the normal reaction between contacting surfaces?
[A] Pulling force
[B] Pushing force
[C] Frictional force
[D] Allied force
Answer: C
4. How coefficient of friction is expressed?
[A] It is expressed as the ratio of force and area
[B] It is the ratio between frictional force and normal reaction
[C] It is the ratio between normal reaction and the mass of the object
[D] It is expressed as the ratio of weight and normal reaction
Answer: B
5. What kind of friction is called if two objects are in contact at rest?
[A] Sliding friction
[B] Rolling friction
[C] Static friction
[D] Angular friction
Answer: C

## 9497498415 | $16 \mid 17$

6. What is the unit of radius of gyration?
[A] $\mathrm{m}^{4}$
[B] m
[C] N
[D] $\mathrm{m}^{2}$

Answer: B
7. The product of inertia at the principal axes is $\qquad$
[A] Minimum
[B] Unit
[C] Zero
[D] Maximum
Answer: C
8. Moment of inertia of a thin spherical shell of mass $M$ and radius $R$, about its diameter is:
[A] $\mathrm{MR}^{2}$
[B] $1 / 2 \mathrm{MR}^{2}$
[C] $2 / 5 \mathrm{MR}^{2}$
[D] $2 / 3 \mathrm{MR}^{2}$
Answer: D

TRIVANDRUM \| KOLLAM | ERANAKULAM

## 9497498415 | $16 \mid 17$

## ANSWER KEY

9. The ratio of the moment of inertia of a rectangular section about its base and an axis parallel to its base and passing through its centre of gravity is
[A] 1.0
[B] 2.0
[C] 3.0
[D] 4.0
Answer: D
10.The moment of inertia of a triangular section of base ' $b$ ' and height ' $h$ ' about an axis passing through its base is $\qquad$ times the moment of inertia about an axis passing through its C.G. and parallel to the base:
[A] 9
[B] 4
[C] 2
[D] 3
Answer: D

Join our social media platforms


