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GATE - Civil Engineering 11. 

CHAPTER – 1

FORCES & MOMENT SYSTEM

1. Introduction

• A branch of physical science that deals with the 
state of rest or motion.

 Three broad classification are

 1. Classical / Newtonian mechanics

 2. Relativistic mechanics

 3. Quantum/ Wave mechanics

1.1 Classical mechanics /Newtonian Mechanics

• Developed by “Sir Isaac Newton”.

• Mechanics of bodies based on three laws of 
motion & law of gravitation is called Newtonian 
mechanics or classical mechanics.

1.2 Relativistic Mechanics

 Developed by “Albert Einstein.

• Mechanics used to explain behaviour of high- 
speed bodies (speed of light = 3 × 108 m/s) is 
called relativistic mechanics.

1.3 Quantum mechanics

• Developed by Schrodinger and Broglie.

• Mechanics used to explain behavior of particles 
when atomic distances are considered is called 
quantum / wave mechanics.

2. Engineering Mechanics

• Application of laws of mechanics to field 
problem is known as engineering mechanics.

Engg. mechanics 
based on body

Mechanics of Solids Mechanics of Fluids

Mechanics of 
Rigid bodies

Statics Dynamics Theory of Elasticity Theory of  
Plasticity

Kinetics Kinematics

Mechanics of 
Deformable bodies

Fig 1: Classification of Mechanics

2.1 Statics

• Mechanics of rigid body which deals with forces 
and its effect on body at rest or in equilibrium.

2.2 Dynamics

•  Mechanic of rigid body which deals with forces 
and its effect on body in motion.

2.2.1 Kinematics 

•  Branch of dynamics which deals with bodies in 
motion without considering the forces causing 
motion.

2.2.2 Kinetics

•  Branch of dynamics which deals with bodies in 
motion along with considering forces causing 
motion

3. Common terms related to mechanics

3.1 Matter

• Anything that occupy space and possess mass. 
The form of matter are solid, liquid, gas, plasma, 
Bose Einstein condensate, Quark gluon, 
Degenerate matter etc..
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LIMIT STATE OF COLLAPSE – COMPRESSION 513. 

1. Compression Members

1.1. Column

 It is a compression member whose effective 
length is greater than 3 times the least dimension 
of the member i.e., (leff /b > 3).

1.2. Pedestal

 It is a compression member whose effective 
length is less than 3 times the least dimension 
of the member i.e., (leff /b ≤ 3). 

1.3. Strut

 The member of a truss which is under the axial 
compressive force is called as strut. 

1.4. Boom

 The member of a crane which is under 
compressive force is known as boom. 

2. Classification Based on Slenderness Ratio

• Slenderness ratio (𝜆𝜆) of an RCC compression 
member is a ratio of effective length of the 
compression member to its least lateral 
dimension. 

 𝜆𝜆 = 
leff

b      

• If 𝜆𝜆 ≤ 3        ⇒    Pedestal

• If 𝜆𝜆 >3         ⇒    Column

• 3 < 𝜆𝜆 < 12   ⇒    Short column

• 𝜆𝜆 ≥ 12         ⇒    Long column

3. Minimum Eccentricity [Clause 39.2 & 25.4 ]

 All columns shall be designed for a minimum 

 eccentricity (emin)

  
emin= 

unsupported length of column
30

                    + lateral dimension
30

 subject to a minimum of 20 mm.

 where the calculated eccentricity is larger, the 
minimum eccentricity should be ignored.

4. Short Columns

4.1. Assumptions [Clause 39.1]

 In addition to the assumptions made for flexure, 
the following shall be assumed:

4.1.1. The maximum compressive strain in 
concrete in axial compression is taken as 0.002.

4.1.2. The maximum compressive strain at the 
highly compressed extreme fibre in concrete 
subjected to axial compression and bending 
and when there is no tension on the section 
shall be, 0.0035 - 0.75×(ԐC) 

 where ԐC is the strain at the least compressed 
extreme fiber. 

4.2. Design criteria for axially loaded short 
columns [Clause 39.3]

•  Shall be designed for minimum eccentricity

•  When emin≯0.05 times the lateral dimension, 
members shall be designed by the following 
equation:

 Pu= 0.4fck Ac+ 0.67fy Asc

 where Pu = Axial load on the member, Ac – 
Area of concrete, fy – Characteristic strength 
of compression reinforcement, Asc – Area of 
longitudinal reinforcement for column, Ag – 
Gross area

CHAPTER – 10

LIMIT STATE OF COLLAPSE – COMPRESSION
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4.3. Short column with helical reinforcement

•  For compression members with helical 
reinforcement the strength shall be taken as 
1.05 times the strength of similar member with 
lateral ties (Clause 39.4).

 i.e., Pu=1.05[0.4fck Ac+0.67fy Asc ]  

 where Ac – Area of core of column measured to 
the outside diameter of helix

• It should also satisfy the condition [Clause 
39.4.1],

  

Volume of helical reinforcement
Volume of core

        
0.36 -1[ Ag

Ac

fck

fy[
 where, Ag =  Gross area of the section, Ac – Area 

of the core of the helically reinforced column 
measured to the outside diameter of the helix.

4.4. Design of short column subjected to  uniaxial 
bending

 The maximum strain in concrete at the 
outermost compression fibre is 0.0035 when the 
N.A lies within the section and

• In the limiting case when the N.A lies along 
the edge of the section, in the latter case strain 
carries from 0.0035 at the highly compressed 
edge to zero at the opposite edge. 

• For purely axial compression, the strain is 
assumed to be uniform and equal to 0.002 
across the section.

 The strain distribution lines in the above two 
cases intersect each other at a depth of 3D/7 
from the highly compressed edge. This point 
is assumed to act as a fulcrum for the strain 
distribution line when the N.A lies outside the 
section.   

• This leads to the assumption that the strain at 
the highly compressed edge is 0.0035 minus 
0.75 times the strain at the least compressed 
edge. 

D

D/2 D/2

When N.A lies 
inside the section 

N.A out inside 
the section 

neutral axis 
fulcrum

3/7D

0.0035

0.002

0.0035

neutral axis

Fig. 1 Strain distribution for short column

Pu Compression failure

Balanced failure

Tension failure

Mu

III

II

I

Fig. 2 Interaction curve

• The design of member subject to combined 
uniaxial loading and uniaxial bending will 
involve lengthy calculations by trial and error. In 
order to overcome these difficulties interaction 
diagrams may be used. 

• They have been prepared and published by BIS 
in SP 16 Design aid for reinforced concrete to 
IS 456.

4.5. Short column with biaxial bending [Clause 
39.6]

•  The Load Contour Method given by Brelser 
1960 is used.

•  The column subjected to biaxial moment should 
satisfy the following equation,
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Mux

Mux1
+

Muy

Muy1
 ≯ 1

       
 where Mux, Muy = Factored moments about x & y 

axes due to design loads, Mux1, Muy1 = Maximum 
uniaxial moment capacity for an axial load of 
Pu, bending about X & Y axes respectively.

 αn = coefficient which depends on cross sectional 
dimension, the amount of reinforcement, 
concrete strength and yield strength of steel. 

4.6. Slender compression members

•  Additional moment method is applied in LSM.

•  Additional moments due to slenderness of the 
column are given by

 

  
Mux = 

PD 

2000 

Lex

D

2

  Mav = 

Pb 

2000 

Ley

b

2

                                               [Clause 39.7.1]

•  The above moments should be added to the 
moments due to eccentric loads.

 where Lex, Ley = Effective length along major 
and minor axes respectively, Max, May = 
Additional moments about major and minor 
axes respectively, b & D = width & depth of 
the cross section (depth is at right angles to the 
major axis)

5. Codal Specifications

5.1. Slenderness limits for columns

•  With both ends restrained, unsupported length 
< 60 times lateral dimension (Clause 25.3.1)

•  If one end of the column is unrestrained, 

unsupported length ≯ 
100 b2

D  (Clause 25.3.2)

5.2. Minimum percentage of longitudinal 
reinforcement = 0.8% (Clause 26.5.3.1)

5.3. Maximum reinforcement ≯ 6%    
(preferably 4%)

5.4. Minimum percentage of steel shall be based on 
actual area of concrete to resist direct stress and 
not upon actual area.

5.5. Minimum size of longitudinal bars= 12 mm 
(to avoid buckling).

5.6. Spacing of longitudinal bars ≯ 300 mm.

5.7. Minimum number of bars,

 For square columns = 4

 For circular columns = 6

 For hexagon = 6 (one at each corner)

5.8. Minimum percentage of reinforcement for 
pedestal = 0.15% of gross cross sectional area 
(nominal).

5.9. Pitch & diameter of lateral ties [Clause 26.5.3.2 
(c)]  

 

Pitch not more than

Diameter ≮

Least lateral dimension 
of the compression 
member
16 x minimum 
diameter of longitudinal 
reinforcement
300 mm

¼th of diameter of largest 
longitudinal bar 

6 mm

{
{

5.10. Helical reinforcement [Clause 26.5.3.2(d)]

 

Pitch  ≯

Pitch ≮ 

75 mm

1/6th core diameter of 
column

25 mm

3 × diameter of steel bar 
forming the helix

{
{

5.11. The clear cover to longitudinal 
reinforcements  ≮ 40 mm (Clause 26.4.2.1) for 
any type of exposure conditions.  

5.12.  Effective length of compression members 
[Table 28, IS 456]
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Table 1. Effective length of compression 
members

Degree of end restraint of 
compression member Symbol Effective 

length

Effectively held in position 
and restrained against 
rotation in both ends

0.65 L

Effectively held in position 
@ both ends, restrained 
against rotation at 1 end

0.8 L

Effectively held in position 
at both ends, but not 
restrained against rotation

1L

Effectively  held in 
position and restrained 
against rotation at one 
end, and at the other 
restrained against rotation 
but not held in position

1.2 L

Effectively held in position 
and restrained against 
rotation in one end, and 
at the other partially 
restrained against rotation 
but not held in position

1.5 L

Effectively held in position 
at one end but not 
restrained against rotation, 
and at the other end 
restrained against rotation 
but not held in position

2 L

Effectively held in position 
and restrained against 
rotation at one end but 
not held in position nor 
restrained against rotation 
at the other end

2 L

 L – Unsupported length of the column

1. An RCC short column (with lateral ties) of 
rectangular cross section of 250 mm × 300 mm  
is reinforced with four numbers of 16 mm 
diameter longitudinal bars. The grades of steel 
and concrete are Fe415 and M20, respectively. 
Neglect eccentricity effect. Considering limit 
state of collapse in compression (IS 456: 2000), 
the axial load carrying capacity of the column 
(in kN, up to one decimal place), is   [GATE 
2018]

2. A column of size 450 mm × 600 mm has 
unsupported length of 3.0 m and is braced 
against side sway in both directions. According 
to IS 456: 2000, the minimum eccentricities (in 
mm) with respect to major and minor principal 
axes                                        [GATE 2015]

A. 20 and 20
B. 26 and 21
C. 26 and 20
D. 21 and 15

QUESTIONS

3. A rectangular column 400 mm × 600 mm is 
reinforced with 0.8% reinforcement based on 
gross area. Fe 415 steel and M30 concrete are 
used. The ultimate load carrying capacity of the 
column is

A. 2136 kN
B. 2438 kN
C. 4320 kN
D. 3390 kN

4. The effective length of a column in building 
frames given in IS: 456- 2000 are based on

A. Wood’s table
B. Wresler’s table

 C. Mohr’s table
 D. Bresler’s table

5.  A five meter long square RCC column is fixed 
at one end and hinged at the other end has 
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minimum radius of gyration as 100 mm, its 
slenderness ratio is

A. 50 mm
B. 40 mm
C. 32.5 mm
D. 20 mm

5.  Answer: B

 For a column with one end fixed and other end 
hinged, leff = 0.8 × unsupported length

  𝜆𝜆 =  
leff
r 

0.8 ×5000
100

=  = 40mm

6. A rectangular reinforced column (B × D) 
has been subjected to uniaxial bending 
moment M and axial load P. Characteristic 
strength of concrete is fck. Which among the 
following column design curves shows the 
relation between M (x-axis) and P (y-axis) 
quantitatively?                           (ESE-2006)

 

 

(A) (B)

(C) (D)

7. A column of 600 mm × 450 mm is having an 
unsupported length of 3 m, the design criteria 
of the column as per IS 456: 2000 will be
A. short along long and short dimensions
B. long along short and short along long  
 dimensions
C. long along long and short dimensions
D. long along long and short along short  
 dimensions

ANSWERS
1.  Answer: 817
 Asc = 4 × (π / 4) × 16 2 = 804.25 mm2

 Ac = (250 × 300 ) – 804.25 = 74195.75 mm2

 Pu= 0.4fck Ac+ 0.67fy Asc

     = (0.4 × 20 × 74195.75 ) + (0.67 × 415 × 804.25) 
= 817.19 kN 

2.  Answer: B
 Emin = 

L 
Lateral dimension + 500 30 

 

 subject to a minimum of 20 mm.

 Here, L = 3 m = 3000 mm

 About major axis,  emin = 
3000 600
500 30 

+

                        = 26 mm > 20 mm

 About minor axis,   emin = 
3000 450
500 30 

+

                                     = 21 mm > 20 mm

 ∴ The minimum eccentricities are 26 mm and 
21 mm. 

3. Answer: D

 Asc = (0.8/100) × 400 × 600 = 1920 mm2 

 Ac = 400 × 600 – 1920 = 238080 mm2

      Pu= 0.4fck Ac+ 0.67fy Asc 
     = 0.4 × 30 × 238080 + 0.67 × 415 × 1920 
     = 3390.8 kN
4.  Answer: A
 The effective length of compression members 

given in Table 28 of IS 456: 2000 is based on 
Wood’s table. 

5.  Answer: B
 For a column with one end fixed and other end 

hinged, Ieff = 0.8 × unsupported length 
   leff 0.8 × 5000

r 100
=  = 40 mm

6.  Answer: D
 The interaction curves given in SP 16 resembles 

as in option‘D’
7. Answer: A

L = 3000 mm
L/b = 3000/450 = 6.67 < 12
Hence, short column
L/d = 3000/600 = 5 <12 
Hence, short column
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EXERCISE

1. A structural member subjected to compression, 
has both translation and rotation restrained at 
one end, while only translation is restrained at the 
other end. As per IS 456: 2000, the effective length 
factor recommended for design is   [GATE-2018]

 A.  0.5
 B.  0.65
  C. 0.70
   D. 0.80                                                                                               
2. A reinforced concrete column contains 

longitudinal steel equal to 1% of net cross-
sectional area of the column.Assume modular 
ratio as 10. The loads carried (using the elastic 
theory) by the longitudinal steel and the net 
area of concrete are Ps and Pc respectivelyThe 
ratio Ps/Pc  expressed as per cent is [GATE-2008]

 A. 0.1
 B. 1
 C. 1.1
 D.  10
3. A rectangular column section of 250mm × 

400mm is reinforced with five steel bars of 
grade Fe-500 each of 20 mm diameter. Concrete 
mix is M-30Axial load in the column section 
with minimum eccentricity as per IS: 456-2000 
using limit state method can be applied upto

     [GATE-2005]
 A. 1707.37
 B. 1805.30
 C. 1806.40
 D. 1903.7
4.  An RC short column with 300 mm × 300 mm 

square cross-section is made of M-20 grade 
concrete and has 4 numbers, 20 mm diameter 
longitudinal bars of Fe-415 steel. It is under the 
action of concentric axial compressive load. 
Ignoring the reduction in the area of due to steel 
bars, the ultimate axial load carrying capacity of 
the column is        [GATE-2004]

 A. 1659 kN

 B. 1548 kN

 C. 1198 kN

 D. 1069 Kn                                                                                               

5.  A reinforced concrete wall carrying 
vertical loads is generally designed as per 
recommendations given for columns. The ratio 
of minimum reinforcements in the vertical and 
horizontal directions is         [GATE-1998]

 A. 2:1

 B. 5:3

 C. 1: 1

 D. 3:5  

6. An R.C. short column, with 300 mm × 300 
mm square cross section is made of M20 grade 
concrete and has 1numbers, 20 mm diameter 
longitudinal bars of Fe 415 steel. It is under the 
action of a concrete axial compressive load. 
Ignoring the reduction int he area of concrete 
due to steel bars, the ultimate axial load carrying 
capacity of the column is

 A. 1659 kN

 B. 1548 kN

 C. 1198 kN

     D. 1069 kN

7. Under the action of a concentric axial 
compressive load, a reinforced concrete short 
square column of size 300 mm is reinforced with 
4 numbers of 25 mm diameter longitudinal bars 
of Fe415 steel. Concrete used is of grade M30. 
The ultimate axial load carrying capacity of the 
column is ____ kN.

 A. 1800

  B. 1200

 C. 856

 D. 1480
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Q. 5) The value of ∫ ∫ �2���  �� �  
�  . Where ‘R’ is the region, bounded by the semicircle r = 

2a Cos  above the initial line is _______?                                                       Gate – 2014-
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 (a) 2�
3                (b) 4�2

3    (c) 2�3

3    (d) 3�3

4  

 

 

 

 

 

Sol :    Ans : © 

            r = 0  to 2a  Cos ,               = 0   to   /2 

∫ ∫ �2���  �� �  
�  = ∫ ��� /2

=0   ∫ �2 ��. �2 ���
�=0  

= ∫ ��� /2
0   [�3

3 ]
0

2����
. � =  ∫ 8�3 ���3 ���

3
/2

0  . � 

= 8�3

3 [���4
4 ]

0

/2
 = 2�3

3  

 

Triple Integrals :  Let f(x,y,z) be defined at each point in the region ‘R’ of space then its triple 
integral is ∫ ∫ ∫ �(�, �, �)�� �� ��.   

�   

 Let   z = 1 (x,y)   to   z = 2(x, y) 

         y = 1 (x)   to   y = 2(x) 

         x = c1     to   x = c2  

             ∫ ∫ ∫ �(�, �, �)�� �� ��.   =  ∫ ∫ ∫ f(x, y, z). dz dy dx2(x,y)
1(x,y)

2(x)
y=1(x)

C2
x=c1

 
�  

Q.) Evaluate ∫ ∫ ∫ �. �� �� ��?√�+�
0

�
0

2
0  

Sol :  

θ = π/2

θ = 00 (2a,0)
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CALCULUS OF VECTOR VALUED FUNCTIONS 
  A vector valued function in two dimensional space defined for a ≤ t ≤ b can be expressed as  
r = x(t) i + y(t), a ≤ t ≤ b and in three dimensional space it is expressed asr  = x(t) i + y(t) j + z(t)k,  
a ≤ t ≤ b. Where x(t), y(t), z(t) are real functions of a real variable t.  These fucntions are also called 
components of the vector valued function r(t).

 A vector valued functionr (t) defined at all points in some neighbourhood of a point  t = a is said to 
be continuous at t = a  if lt   r(t) = r(a)

t→a   ie, the limiting vector of the variable vector r(t)  is the same as the 
vector r(a) as t approaches a.  The vector function r(t) is continuous at each point t & T.

 A vector valued function r(t) = x(t)i + y(t)j +z(t)k at t = a is continuous if and only if, the component 
functions x(t), y(t) and z(t) are continuous  at t = a.

4.1 Derivative of vector valued functions 

 Let r(t) be a vector valued function defined at all points in a neighbourhood of a point t = a,  if   
lt     r(t) - r(a)

t - at→a  exists and is denoted by d
dt

 r(t)  or  ŕ(a) 

4.2 Geometric interpretation  of r(t)

 Let 'c' be the graph of a vector valued function r(t) is defined (exists) and non -zero for a given 
value of t.  Let r(t) be computed at the terminal point of the radius vector r(t).  Then r(t) is tangential to the 
curve  'c' and directed along the direction if increasing parameter 't'.

 The vector funciton f(t) = x(t) i + y(t)j + z(t)k is  differentiable at 't' if and only if the component 
functions x(t), y(t) are differentialbe at 't'.  The derivative of  r(t) = x(t)i + y(t) j + z(t)k is given by,

 
= d

d(t)
d
dt

 r(t) d
d(t)

d
d(t)x(t)i + y(t)j + z(t)k

   

4.3 Properties of vector functions

 Let f(t) be a real valued function t, and r1(t) and r2(t) be vector valued functions of t and α and ꞵ be 
scalar.  Then

 1. 
dα
dt = 0  

 2. d
dt (αr1(t) + ꞵr2(t)) = α d

dt r1(t) + ꞵ r2(t) 
d

dt
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  A vector valued function in two dimensional space defined for a ≤ t ≤ b can be expressed as  
r = x(t) i + y(t), a ≤ t ≤ b and in three dimensional space it is expressed asr  = x(t) i + y(t) j + z(t)k,  
a ≤ t ≤ b. Where x(t), y(t), z(t) are real functions of a real variable t.  These fucntions are also called 
components of the vector valued function r(t).

 A vector valued functionr (t) defined at all points in some neighbourhood of a point  t = a is said to 
be continuous at t = a  if lt   r(t) = r(a)

t→a   ie, the limiting vector of the variable vector r(t)  is the same as the 
vector r(a) as t approaches a.  The vector function r(t) is continuous at each point t & T.

 A vector valued function r(t) = x(t)i + y(t)j +z(t)k at t = a is continuous if and only if, the component 
functions x(t), y(t) and z(t) are continuous  at t = a.

4.1 Derivative of vector valued functions 

 Let r(t) be a vector valued function defined at all points in a neighbourhood of a point t = a,  if   
lt     r(t) - r(a)

t - at→a  exists and is denoted by d
dt

 r(t)  or  ŕ(a) 

4.2 Geometric interpretation  of r(t)

 Let 'c' be the graph of a vector valued function r(t) is defined (exists) and non -zero for a given 
value of t.  Let r(t) be computed at the terminal point of the radius vector r(t).  Then r(t) is tangential to the 
curve  'c' and directed along the direction if increasing parameter 't'.

 The vector funciton f(t) = x(t) i + y(t)j + z(t)k is  differentiable at 't' if and only if the component 
functions x(t), y(t) are differentialbe at 't'.  The derivative of  r(t) = x(t)i + y(t) j + z(t)k is given by,

 
= d

d(t)
d
dt

 r(t) d
d(t)

d
d(t)x(t)i + y(t)j + z(t)k

   

4.3 Properties of vector functions

 Let f(t) be a real valued function t, and r1(t) and r2(t) be vector valued functions of t and α and ꞵ be 
scalar.  Then

 1. 
dα
dt = 0  

 2. d
dt (αr1(t) + ꞵr2(t)) = α d

dt r1(t) + ꞵ r2(t) 
d

dt
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  A vector valued function in two dimensional space defined for a ≤ t ≤ b can be expressed as  
r = x(t) i + y(t), a ≤ t ≤ b and in three dimensional space it is expressed asr  = x(t) i + y(t) j + z(t)k,  
a ≤ t ≤ b. Where x(t), y(t), z(t) are real functions of a real variable t.  These fucntions are also called 
components of the vector valued function r(t).

 A vector valued functionr (t) defined at all points in some neighbourhood of a point  t = a is said to 
be continuous at t = a  if lt   r(t) = r(a)

t→a   ie, the limiting vector of the variable vector r(t)  is the same as the 
vector r(a) as t approaches a.  The vector function r(t) is continuous at each point t & T.

 A vector valued function r(t) = x(t)i + y(t)j +z(t)k at t = a is continuous if and only if, the component 
functions x(t), y(t) and z(t) are continuous  at t = a.

4.1 Derivative of vector valued functions 

 Let r(t) be a vector valued function defined at all points in a neighbourhood of a point t = a,  if   
lt     r(t) - r(a)

t - at→a  exists and is denoted by d
dt

 r(t)  or  ŕ(a) 

4.2 Geometric interpretation  of r(t)

 Let 'c' be the graph of a vector valued function r(t) is defined (exists) and non -zero for a given 
value of t.  Let r(t) be computed at the terminal point of the radius vector r(t).  Then r(t) is tangential to the 
curve  'c' and directed along the direction if increasing parameter 't'.

 The vector funciton f(t) = x(t) i + y(t)j + z(t)k is  differentiable at 't' if and only if the component 
functions x(t), y(t) are differentialbe at 't'.  The derivative of  r(t) = x(t)i + y(t) j + z(t)k is given by,

 
= d

d(t)
d
dt

 r(t) d
d(t)

d
d(t)x(t)i + y(t)j + z(t)k

   

4.3 Properties of vector functions

 Let f(t) be a real valued function t, and r1(t) and r2(t) be vector valued functions of t and α and ꞵ be 
scalar.  Then

 1. 
dα
dt = 0  

 2. d
dt (αr1(t) + ꞵr2(t)) = α d

dt r1(t) + ꞵ r2(t) 
d

dt
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Triple Integrals :  Let f(x,y,z) be defined at each point in the region ‘R’ of space then its triple 
integral is ∫ ∫ ∫ �(�, �, �)�� �� ��.   

�   

 Let   z = 1 (x,y)   to   z = 2(x, y) 

         y = 1 (x)   to   y = 2(x) 

         x = c1     to   x = c2  

             ∫ ∫ ∫ �(�, �, �)�� �� ��.   =  ∫ ∫ ∫ f(x, y, z). dz dy dx2(x,y)
1(x,y)

2(x)
y=1(x)

C2
x=c1

 
�  
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0  

Sol :  

θ = π/2

θ = 00 (2a,0)

Sol: 

Q. 5)

MATHEMATICS542

 9497498415 | 416 | 417CIVIL IANZ  Publ icat ions

CALCULUS OF VECTOR VALUED FUNCTION

CALCULUS OF VECTOR VALUED FUNCTIONS 
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r = x(t) i + y(t), a ≤ t ≤ b and in three dimensional space it is expressed asr  = x(t) i + y(t) j + z(t)k,  
a ≤ t ≤ b. Where x(t), y(t), z(t) are real functions of a real variable t.  These fucntions are also called 
components of the vector valued function r(t).

 A vector valued functionr (t) defined at all points in some neighbourhood of a point  t = a is said to 
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t→a   ie, the limiting vector of the variable vector r(t)  is the same as the 
vector r(a) as t approaches a.  The vector function r(t) is continuous at each point t & T.

 A vector valued function r(t) = x(t)i + y(t)j +z(t)k at t = a is continuous if and only if, the component 
functions x(t), y(t) and z(t) are continuous  at t = a.

4.1 Derivative of vector valued functions 

 Let r(t) be a vector valued function defined at all points in a neighbourhood of a point t = a,  if   
lt     r(t) - r(a)

t - at→a  exists and is denoted by d
dt

 r(t)  or  ŕ(a) 

4.2 Geometric interpretation  of r(t)

 Let 'c' be the graph of a vector valued function r(t) is defined (exists) and non -zero for a given 
value of t.  Let r(t) be computed at the terminal point of the radius vector r(t).  Then r(t) is tangential to the 
curve  'c' and directed along the direction if increasing parameter 't'.

 The vector funciton f(t) = x(t) i + y(t)j + z(t)k is  differentiable at 't' if and only if the component 
functions x(t), y(t) are differentialbe at 't'.  The derivative of  r(t) = x(t)i + y(t) j + z(t)k is given by,

 
= d

d(t)
d
dt

 r(t) d
d(t)

d
d(t)x(t)i + y(t)j + z(t)k

   

4.3 Properties of vector functions

 Let f(t) be a real valued function t, and r1(t) and r2(t) be vector valued functions of t and α and ꞵ be 
scalar.  Then

 1. 
dα
dt = 0  

 2. d
dt (αr1(t) + ꞵr2(t)) = α d

dt r1(t) + ꞵ r2(t) 
d

dt
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lt     r(t) - r(a)

t - at→a  exists and is denoted by d
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d
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d
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4.3 Properties of vector functions
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  A vector valued function in two dimensional space defined for a ≤ t ≤ b can be expressed as  
r = x(t) i + y(t), a ≤ t ≤ b and in three dimensional space it is expressed asr  = x(t) i + y(t) j + z(t)k,  
a ≤ t ≤ b. Where x(t), y(t), z(t) are real functions of a real variable t.  These fucntions are also called 
components of the vector valued function r(t).

 A vector valued functionr (t) defined at all points in some neighbourhood of a point  t = a is said to 
be continuous at t = a  if lt   r(t) = r(a)

t→a   ie, the limiting vector of the variable vector r(t)  is the same as the 
vector r(a) as t approaches a.  The vector function r(t) is continuous at each point t & T.

 A vector valued function r(t) = x(t)i + y(t)j +z(t)k at t = a is continuous if and only if, the component 
functions x(t), y(t) and z(t) are continuous  at t = a.

4.1 Derivative of vector valued functions 

 Let r(t) be a vector valued function defined at all points in a neighbourhood of a point t = a,  if   
lt     r(t) - r(a)

t - at→a  exists and is denoted by d
dt

 r(t)  or  ŕ(a) 

4.2 Geometric interpretation  of r(t)

 Let 'c' be the graph of a vector valued function r(t) is defined (exists) and non -zero for a given 
value of t.  Let r(t) be computed at the terminal point of the radius vector r(t).  Then r(t) is tangential to the 
curve  'c' and directed along the direction if increasing parameter 't'.

 The vector funciton f(t) = x(t) i + y(t)j + z(t)k is  differentiable at 't' if and only if the component 
functions x(t), y(t) are differentialbe at 't'.  The derivative of  r(t) = x(t)i + y(t) j + z(t)k is given by,

 
= d

d(t)
d
dt

 r(t) d
d(t)

d
d(t)x(t)i + y(t)j + z(t)k

   

4.3 Properties of vector functions

 Let f(t) be a real valued function t, and r1(t) and r2(t) be vector valued functions of t and α and ꞵ be 
scalar.  Then
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dα
dt = 0  

 2. d
dt (αr1(t) + ꞵr2(t)) = α d

dt r1(t) + ꞵ r2(t) 
d

dt
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 3. ) = +d d
dt dt

d
dt

 (f(t)r1(t) f(t) r1(t) f(t) r1(t)  

4.4 Derivatives of dot product and cross product of vector funciton

 The following rules of differentiation are useful to differentiate combinations of vector valued 
functions 

 Let r(t) and s(t) be two vector valued functions of a scalar variable 't' then, 

 1. = +d d d
dt dt dt

 (r(t) s(t)) r(t) s(t) r(t) . s(t)

 2. = +d d d
dt dt dt

 (r(t) x s(t)) r(t) s(t) r(t) s(t)x

4.5 Motion along a curve - velocity and acceleration

 Let r(t) = x(t)i + y(t)j be the vector valued function describing position vector of a moving particle 

along a curve in a plane.  Then the instantaneous rate of change of position, that is velocity of the particle 

is defined as  dr(t)
dtu(t) =   and the instantanious acceleration of the particle is defined as 

du(t) d2r(t)
dt dt2a(t) = =  

and speed of the particle is given by |u(t)|  = d
dt

r(t)

Practice problems

Q 1. Find the velocity, speed, acceleration at the given time t of a particle moving along the given curve
 x = 1 + 3t, y = 2 - 4t, z = 7 + 2t, at t = 2 ?

Sol: 

  r(t)  = xi + yj + zk

   = (1 + 3t)i + (2 - 4t)j  + (7 + 2t) k

  
dr(t)
dtu(t) =     = 3i - 4j + 2k

  velocity at t = 2,    u(t) = 3i - 4j + 2k

  acceleration = r'' (t) = 0

  speed = |u| = √9 + 16 + 4  

                    = √29

Q 2. Find the position and velocity vectors of the particle given a(t) = 
1

(t + 1)2
e-2t k  j  - u(0) = 3i - j

 r(0) = k
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 3. ) = +d d
dt dt

d
dt

 (f(t)r1(t) f(t) r1(t) f(t) r1(t)  

4.4 Derivatives of dot product and cross product of vector funciton

 The following rules of differentiation are useful to differentiate combinations of vector valued 
functions 

 Let r(t) and s(t) be two vector valued functions of a scalar variable 't' then, 

 1. = +d d d
dt dt dt

 (r(t) s(t)) r(t) s(t) r(t) . s(t)

 2. = +d d d
dt dt dt

 (r(t) x s(t)) r(t) s(t) r(t) s(t)x

4.5 Motion along a curve - velocity and acceleration

 Let r(t) = x(t)i + y(t)j be the vector valued function describing position vector of a moving particle 

along a curve in a plane.  Then the instantaneous rate of change of position, that is velocity of the particle 

is defined as  dr(t)
dtu(t) =   and the instantanious acceleration of the particle is defined as 

du(t) d2r(t)
dt dt2a(t) = =  

and speed of the particle is given by |u(t)|  = d
dt

r(t)

Practice problems

Q 1. Find the velocity, speed, acceleration at the given time t of a particle moving along the given curve
 x = 1 + 3t, y = 2 - 4t, z = 7 + 2t, at t = 2 ?

Sol: 

  r(t)  = xi + yj + zk

   = (1 + 3t)i + (2 - 4t)j  + (7 + 2t) k

  
dr(t)
dtu(t) =     = 3i - 4j + 2k

  velocity at t = 2,    u(t) = 3i - 4j + 2k

  acceleration = r'' (t) = 0

  speed = |u| = √9 + 16 + 4  

                    = √29

Q 2. Find the position and velocity vectors of the particle given a(t) = 
1

(t + 1)2
e-2t k  j  - u(0) = 3i - j

 r(0) = k
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u(t) = a(t) dt

= (t+1)2
1 e-2t k dtj  - 

                      = 1+t 2
-1 e-2t k +c1j  + 

  When t = 0,

  u(0) = 2
k  + -j + c1

  
2
kc1 = 3i - 

3i 2
k  + -j + c1⇒ -j =

               

  u(t) = 2j +  (1+t)
e-2t-1 k+ (3i - ½)k

                  

-ln(t + 1)j -= k +4
e-2t

3ti - tk
2 + c2

r(t) dt = j + k +1+t 2
-1 e-2t

(3i - ½)k dt

3ti - ln(t + 1)j - = k+ c2 +4
e-2t

½ t (                            )
r(0) = k =  k +c2

-1
4

 k c2 =
5
4

3ti - ln(t + 1)j + = - -4 24
5 11(                                              ) k tr(t)  e-2t

Q 3. Find the velocity and acceleration at t = 0, r(t) = eti + e-2tj + tk     t = 0

 
   

eti + e-2tj + tk=r(t)  

eti - 2e-2tj + k=v(t)  

eti + 4e-2tj =a(t)  

u(t) at t = 0,    v = i - 2j + k   

a(t) at t = 0,    a = i + 4j  

4.6 Scalar Point Functions

 At each point P of a region R we may associate a scalar denoted by φ(P). We then say that φ is a point-
function over the region R.

4.7 Vector Point Functions

 Each point P of a region R, there is associated a vector F (P), the function F is called a vector-point - 
function. 
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 3. ) = +d d
dt dt

d
dt

 (f(t)r1(t) f(t) r1(t) f(t) r1(t)  

4.4 Derivatives of dot product and cross product of vector funciton

 The following rules of differentiation are useful to differentiate combinations of vector valued 
functions 

 Let r(t) and s(t) be two vector valued functions of a scalar variable 't' then, 

 1. = +d d d
dt dt dt

 (r(t) s(t)) r(t) s(t) r(t) . s(t)

 2. = +d d d
dt dt dt

 (r(t) x s(t)) r(t) s(t) r(t) s(t)x

4.5 Motion along a curve - velocity and acceleration

 Let r(t) = x(t)i + y(t)j be the vector valued function describing position vector of a moving particle 

along a curve in a plane.  Then the instantaneous rate of change of position, that is velocity of the particle 

is defined as  dr(t)
dtu(t) =   and the instantanious acceleration of the particle is defined as 

du(t) d2r(t)
dt dt2a(t) = =  

and speed of the particle is given by |u(t)|  = d
dt

r(t)

Practice problems

Q 1. Find the velocity, speed, acceleration at the given time t of a particle moving along the given curve
 x = 1 + 3t, y = 2 - 4t, z = 7 + 2t, at t = 2 ?

Sol: 

  r(t)  = xi + yj + zk

   = (1 + 3t)i + (2 - 4t)j  + (7 + 2t) k

  
dr(t)
dtu(t) =     = 3i - 4j + 2k

  velocity at t = 2,    u(t) = 3i - 4j + 2k

  acceleration = r'' (t) = 0

  speed = |u| = √9 + 16 + 4  

                    = √29

Q 2. Find the position and velocity vectors of the particle given a(t) = 
1

(t + 1)2
e-2t k  j  - u(0) = 3i - j

 r(0) = k
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u(t) = a(t) dt

= (t+1)2
1 e-2t k dtj  - 

                      = 1+t 2
-1 e-2t k +c1j  + 

  When t = 0,

  u(0) = 2
k  + -j + c1

  
2
kc1 = 3i - 

3i 2
k  + -j + c1⇒ -j =

               

  u(t) = 2j +  (1+t)
e-2t-1 k+ (3i - ½)k

                  

-ln(t + 1)j -= k +4
e-2t

3ti - tk
2 + c2

r(t) dt = j + k +1+t 2
-1 e-2t

(3i - ½)k dt

3ti - ln(t + 1)j - = k+ c2 +4
e-2t

½ t (                            )
r(0) = k =  k +c2

-1
4

 k c2 =
5
4

3ti - ln(t + 1)j + = - -4 24
5 11(                                              ) k tr(t)  e-2t

Q 3. Find the velocity and acceleration at t = 0, r(t) = eti + e-2tj + tk     t = 0

 
   

eti + e-2tj + tk=r(t)  

eti - 2e-2tj + k=v(t)  

eti + 4e-2tj =a(t)  

u(t) at t = 0,    v = i - 2j + k   

a(t) at t = 0,    a = i + 4j  

4.6 Scalar Point Functions

 At each point P of a region R we may associate a scalar denoted by φ(P). We then say that φ is a point-
function over the region R.

4.7 Vector Point Functions

 Each point P of a region R, there is associated a vector F (P), the function F is called a vector-point - 
function. 
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4.8 The Vector differential Operator ∇ 

 The vector differential operator ∇(read as nabla) is defined as  

 ∇ = ∂
∂xi + ∂

∂yj + ∂
∂z

k where i, j, k,  are unit vectors

 The vector operator ∇ behaves like an ordinary vector, it satisfies all the properties of ordinary vectors.  

4.9 Gradient (or slope of a scalar point function)

 Let φ(x, y, z) be a scalar point functions and is continuously differentiable, then the vector 

 grad φ - ∇ φ = ∂
∂x

∂φ
∂xi i+ + ∂

∂y
∂φ
∂yj j+ + ∂

∂z
∂φ
∂zk k=(                                                                       ) φ

 is called the gradient of the scalar funtion φ.

 Note -1 : Geometrically, gradφ at a point is the normal vector to the surface as shown below.

 Note -2 : Unit normal vector is given by  gradφ
|gradφ|

4.10 Properties of Gradient 

 1. If  f and g are any two scalar point functions then ∇(f ± g) = ∇f ± g.

 2. If f and g are two scalar point functions then grad (fg) = f grad g + g grad f   

 3. If f and g are two scalar point functions then ∇(f/g) =  
g∇f - f ∇g

g2 

 4. Gradient of of constant is zero.

4.11 Directional Derivative

 Let f(x, y, z) be a differentiable function at (x0, y0, z0) and u = u1i + u2j + u3k be a unit vector.  Then the 
directional derivative in the direction of the unit vector u = u1i + u2j + u3k at (x0, y0, z0) exists and is 
given by 

   

Duφ (x0, y0, z0) = u1
∂φ
∂x

∂φ ∂φ
u2

u3∂y ∂z+ +

= ∇φ u 

  Where the partial derivatives 
∂f
∂x

∂f
∂y

∂f
∂z

, ,  are computed at (x0, y0, z0) and ū is a unit vector along 

which direction, we want to compute the directional derivation.

4.12 Properties of directional derivative

 Let f(x,y,z) be a function having continuous first order partial derivatives in some neghberhood at 
the point f(x,y,z) then,

 (i) If ∇f(x,y,z) = 0, then directional derivatives along any direction at p(x,y,z) vanishes.
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