TABLE OF CONTENTS

I.	Flu	uid mechanics & Hydraulic machines	
	1.	Properties of fluid	9
	2.	Fluid pressure	.11
	3.	Buoyancy & flotation	.12
	4.	Fluid kinematics	.13
	5.	Fluid dynamics	.16
	6.	Flow through pipes & jets	_
	7.	Dimensional analysis & boundary layer	. 19
	8.	Laminar flow	.21
	9.	Open channel flow	
	10.	. Notches, weirs, orifice & mouthpiece	.25
	11.	. Hydraulic machines	.26
II.	Ge	Cotechnical Engineering Origin of soil	
	1.	Origin of soil	.30
	2.	Basic properties of soil	
	3.	Index properties of soil	.34
	4.	Soil structure classification	39
	5.	Permeability	.42
	6.	Effective stress	.45
	7.	Seepage analysis	.47
	8.	Consolidation	50
	9.	Compaction of soil	.54
	10.	. Shear strength	.56
	11.	. Stability of slope.	.60
	12.	. Earth pressure	62
	13.	. Stress distribution	65
	14.	. Bearing capacity	67
	15.	. Pile foundation	69
	16.	. Soil exploration	.71

PROPERTIES OF FLUIDS

1. Study of fluid in motion without considering the forces causing it

: Kinematics

2. Study of fluid in motion considering the forces causing it

: Dynamics

3. Mass density of water : 1000kg/m³ or 1g/cc

4. Ratio of weight of fluid to its volume is called

: Weight density or Specific weight

5. Weight density of water : 9810 N/m³

6. Reciprocal of mass density : **Specific volume**

7. Mass density of air : 1.24 kg/m³

8. Specific gravity of mercury : 13.6

9. Property of fluid which offers resistance to the movement of fluid

: Viscosity

10. Unit of dynamic viscosity : Ns/m² or Pa.s

11. Ratio of dynamic viscosity to the density of fluid

: Kinematic viscosity

12. Unit of kinematic viscosity in CGS System

Civil Engg: Stokes or cm³/s Exams

13. 1 Stoke is equal to $: 10^{-4} \text{m}^2/\text{s}$

14. According to Newton's law of viscosity, shear strass is directly proportional to : Rate of shear strain or velocity gradient

15. Tensile force acting on the surface of a fluid is called

: Surface tension

16. Pressure inside a liquid droplet : $40\sigma/d$

17. Attraction between different types of molecules is called

: Adhesion

18. As temperature increases, surface tension...

: Decreases

19. The rise or fall of a liquid when it is partially immersed in the liquid

: Capillarity

20. Capillary rise occurs when : Adhesion is greater than cohesion

21. Equation for capillary rise $: \frac{4\sigma \cos \theta}{vd}$

22.is the ratio of increase in pressure to the volumetric strain

: Bulk Modulus

23.is the reciprocal of Bulk Modulus

: Compressibility

24. Dimensional formula for Dynamic viscosity

: ML-IT-I

25. Capillary fall occurs when angle of contact is

: Obtuse

26. Unit of dynamic viscosity in CGS System

: Poise or dyne.sec/cm²

27. Poise is equal to $: 1/10 \text{ Ns/m}^2$

28. Fluid which is incompressible and has zero viscosity is called

: Ideal fluid

Since 2012

FLUID PRESSIRE

- **1.** 1 bar is equal to Pascal : **10**⁵
- 2. The Intensity of pressure in a static fluid is same in all directions is stated by : Pascal's law
- 3. The rate of increase of pressure in a vertically downward direction is proportional to : **Depth of fluid**
- **4.** Hydraulic press works on the principle of : **Pascal's law**
- 5. Pressure which is measured with reference to absolute zero pressure : Absolute pressure
- 6. Any pressure measured with reference to atmospheric pressure is called : Gauge pressuure
- 7. Negative gauge pressure is otherwise called: Vacuum pressure
- 8. Pressure measured in common pressure measuring instruments : Gauge pressure
- 9. Pressure measured below atmospheric pressure: Vacuum pressure
- 10. Atmospheric pressure at sea level at 15 degree Celsius
 : 760 mm of Hg/10.33m of H₂O/101.3 KN/m²
- 11. Usually mercury is used as manometric fluid because of its : High specific gravity
- 12.is used to find out the pressure at a point in a flowing fluid : Simple Manometer
- **13.**is used to find difference in pressure between two points in a pipe or pressure difference in two pipes: **Differential Manometer**
- 14.can be used to find vacuum pressure: U tube manometer
- 15. Lighter manometric fluids are used only for Inverted : U tube manometer
- **16.** are mechanical devices used for measuring the pressure by balancing the fluid column by a spring or dead weight : **Mechanical Gauge**
- 17. Diaphragm pressure gauges can measure pressure up to :16 milli bar
- **18.** Commonly used pressure gauges used to measure medium to high pressure. : **Bourdons Pressure gauge**
- 19. Pressure gauges mainly used to measure absolute pressure: Bellows pressure gauge

	BUOUTANCI AND FLOTATION		
1.	The upward force exerted by the fluid on the body when immersed in it is called : Buoyant force		
2.	The point through which buoyant force is supposed to act : Centre of buoyancy		
3.	Point about which a floating body starts oscillating when it is tilted by a small angle is called : Metacentre		
4.	is a point at which the line of action of force of buoyancy will meet the normal axis of body when it is given by a small angular displacement : Metacentre		
5.	Distance between centre of gravity and metacentre is called : Metacentric height		
6.	Floating body will be in stable equilibrium condition if : Metacentre is above centre of gravity		
7.	The point of application of total pressure in a body is called : Centre of pressure		
8.	Total pressure always acts to surface : Normal		
9.	Depth of centre of pressure of a submerged rectangular plane (with depth h) with its longest edge Just touching the water level is		
10.	I/V of a floating body is termed as 2012		
	: Metacentric radius		
11.	Metacentric height of an ocean going vessel usually ranges from : 30 cm to 1.2 m		
12.	Buoyant force is equal to		
	: Weight of the volume of fluid displaced by the solid body		
13.	A submerged body is in stable equilibrium, if the centre of gravity of body lies : Below centre of buoyancy		
14.	When a block of ice floating in a container melts, the level of water in container: Remains same		

FLUID KINEMATICS

1. Branch of fluid mechanics that studies properties of fluid in motion without considering the forces causing it

: Kinematics

2. In method, a single fluid particle is considered and its properties throughout its motion is studied.

: Lagrangian method

- 3. In method, a point is fixed and properties of fluid passing through that particular point is studied. : Eulerian method
- 4. The flow in which flow properties doesn't change with respect to time is called : Steady flow
- **5.** The flow in which flow properties doesn't change with respect to space is called : **Uniform flow**
- **6.** The flow in which fluid particles moves in a well defined path is called : **Laminar flow**
- 7. Well defined path in which a Laminar flow takes place is called : Stream line
- 8. If the density of fluid is varying throughout the motion with respect to time : Compressible flow
- **9.** Continuity equation is based on the principle of

: Law of conservation of mass

10. For deriving continuity equation, flows assumed to

: Steady & Incompressible

- **11.** Quantity of fluid passing through a particular point per unit time is called : **Discharge**
- 12. In vector form, continuity equation can be represented as $: \nabla . \mathbf{V} = \mathbf{0}$
- **13.** Rate of change of velocity with respect to time at a given point in a flow field : **Local acceleration**
- **14.** Rate of change of velocity due to change of position of fluid

particles in a flow field. : Convective Acceleration

15. Total acceleration is the sum of

: Local and Convective acceleration

- 16. Total acceleration of fluid particle is otherwise called
 - : Material acceleration or Substantial acceleration
- 17. In steady flow, total acceleration is equal to: Convective acceleration (Local acceleration = 0)
- **18.** A scalar function whose negative derivative with respect to any direction gives fluid velocity in that direction

: Potential function

- 19. Line along which a potential function is constant is called : Equipotential line
- **20.** A scalar function whose partial derivative with respect to any direction will give velocity component perpendicular to that direction is called : **Stream function**
- **21.** Une along which stream function is constant is called : **Stream line**
- **22.** Product of slope of equipotential line and stream line is : -1
- 23. Equipotential lines and stream lines always intersect : Orthogonally
- **24.** If potential function exists, then flow is said to be Irrotational
- **25**. A grid formed by drawing a series of equipotential lines and stream lines is called : **Flow net**
- **26.**is defined as the flow of liquid along a curved : **Vortex motion path**.
- 27. Flow of liquid inside the impeller of centrifugal pump is an example of : Forced vortex
- **28.** If no external torque is required for the vortex motion to take place, then it is called : **Free vortex**

- **29.** The path/ trajectory followed by a certain fluid particle is called : **Path line**
- **30.** A line drawn joining all the points that has previously passed through a certain common point is called

: Streak line

- **31**. Path of smoke coming out of a chimney is an example of : **Streak line**
- **32**. Bundle of stream line constitute to form

: Stream tube

- **33.** For a steady flow, stream line, streak line and path line
 - : Coincide
- 34. Row along a closed curve is called

: Circulation

- **35.**is the line integral of the velocity field in a closed curve. : **Circulation**
- **36**. is the measure of rotation of fluid elements as it moves through the flow. : **Vorticity**
- 37. Ratio of circulation to its area is called

: Vorticity

38. The flow coming from a point and moves radially outwards in all directions at uniform rate is called...

: Source flow

- **39.** The flow which is radially Inwards and disappears is
 - : Sink flow
- 40. In free vortex flow, the stream lines are

: Concentric circles

FLUID DYNAMICS

- 1. Branch of fluid mechanics that studies properties of fluid in motion considering the forces causing it : **Dynamics**
- 2. Which are the forces considered in deriving Eulers equation of motion? : Gravitational and Pressure force
- 3. Each term in Bernoulli's equation represents

: Energy per unit weight

4. Bernoulli's theorem is based on the principle of

: Law of conservation of energy

5. Examples for the application of Bernoulli's theorem

: Venturimeter, Orifice meter, Pitot tube

- **6.** Venturimeter is used to find : **Discharge or rate of flow**
- 7. Diverging part of venturimeter have times length as that of its converging part : 3 to 5 times
- **8.** Angle of convergence of venturimeter

: 20 to 30 degree

- 9. Angle of divergence of venturimeter : 6 to 7 degree
- 10. Diameter of throat istimes diameter of pipe

: 1/3 to 1/2

11. In orifice meter diameter of orifice is kept times diameter of pipe.

0.5

- **12.** Pitot tube is used to measure : **Velocity of flow**
- 13. Coefficient of velocity of Pitot tube is in the range of : 0.9 to 0.95
- 14. Coefficient of discharge for orificemeter: 0.6 to 0.7
- **15.** When a liquid passing over an immersed body, at a point the resultant velocity becomes zero. This point is called

: Stagnation point

16. Nozzle meter and rotameter are used to measure

: Discharge through pipes

17. Hot wire anemometer is used to measure

: Velocity of air and gas

FLOW THROUGH PIPES & JET

1. Impulse momentum equation is derived based on the principle of

: Law of conservation of Momentum

- 2. Momentum correction factor for laminar flow through circular pipe is taken as : 1.33
- 3. Force exerted by a water jet striking on a stationary vertical plane is $: \rho AV^2$
- 4. Linear momentum equation is based

: On Newton's second law

- 5. Reynolds number is the ratio of Inertia force to: Viscous force
- **6.** In Reynolds experiment, which dye is used to study the flow pattern : **Aniline**
- 7. For turbulent flow in smooth pipes, the head loss is proportional to n th power of velocity. What is the value of n?

 : 1.75 to 2.0
- **8.** Major head loss in pipe flow occurs due to : **Friction**
- **9.** Equation commonly used to find out Head loss in pipes

: Darcy Weisbach equation

- 10. Minor head loss due to sudden contraction can be calculated by using the formula $: \frac{0.5 v^2}{2g}$
- 11. If the pressure heads at the different sections of the pipe are plotted to scale as vertical ordinates above the axis of pipe and all these points are joined by a straight line, a straight sloping line will be obtained known as

 : Hydraulic Gradient Line
- 12. Piezometric head is the sum of: Pressure head and Datum head
- **13.** Difference between the ordinates of Total Energy line and Hydraulic Gradient line is equal to : **Velocity head**
- 14. Nozzle meter and rota meter are used to measure: Discharge through pipes
- **15.** Equation for friction factor for laminar flow

: 64/Re

16. Chezy's formula is given by $V = C \sqrt{mi}$