083/2024

Maximum: 100 marks

Time: 1 hour and 30 minutes

1.		mum bending moment developed in a to an udl of 10 kN/m, in kNm unit, is		y supported beam of span 4 m which is
	(A)	13.33	(B)	20
	(C)	40	(D)	80
2.		-	oment a	at the free end. The shape of the shear
	force diag			
	(A)	Triangle	(B)	Rectangle
	(C)	Parabola	(D)	None of these
3.	Which of	the following method is used for the a	nalysis	of trusses?
	(A)	Moment distribution method	(B)	Slope deflection method
	(C)	Method of joints	(D)	Kani's method
4.	Influ <mark>e</mark> nce	line diagram can be used to find the		
		ding moment diagram of the member ar force diagram of the member		
	3. Sup	port reaction of the member		
	(A)	First statement is correct	(B)	Second statement is correct
	(C)	Third statement is correct	(D)	All statements are correct
5 .	Which of	the following is a determinate structu	ıre?	
	(A)	Two span continuous beam with sin	nple sup	pports
	(B)	Propped cantilever	-	
	(C)	Fixed beam		
		Three hinged arch		
6.	Select a fe	orce method of analysis from the follo	wing:	
	(A)	Consistent deformation method	(B)	Moment distribution method
	(C)	Slope deflection method	(D)	Kani's method
A		3		
				[P.T.O.]

7.	7. A cantilever with 3 m span is subjected to a 20 kN load at the free end. If EI = 10000 kN the maximum deflection of the beam in mm is:				
	(A)	18	(B)	27	
	(C)	36	(D)	9	
8.	The Statio	and Kinematic Indeterminacy	y respectively o	of a fixed beam in general will be :	
	(A)	0 and 3	(B)	3 and 0	
	(C)	3 and 3	(D)	0 and 0	
9.	The absol	ute stiffness at the near end of	a member who	en the far end is fixed is:	
	(A)	0	(B)	2 EI/L	
	(C)	3 EI/L	(D)	4 EI/L	
10.	The ratio	of shear stress to shear strain	is defined as :		
	(A)	Modulus of elasticity	(B)	Modulus of rigidity	
	(C)	Poisson's ratio	(D)	Bulk modulus	
11.		made by the line joining the ith the x-axis is approximately 33.69°	_	nimum specific energies of rectangular	
	(C)	56.31°	(D)	133.31°	
12.	6, 3, 2 a	nd 0. A storm of 6.6 cm occ	urs uniformly	als starting from time $t = 0$ are 0, 3, 8, over the catchment in 3 hrs. If the ordinate of storm hydrograph and the	
		of the storm is:			
	(A)	24 m³/s	(B)	$36 \text{ m}^3\text{/s}$	
	(C)	41 m³/s	(D)	49 m ³ /s	
13.		function is given by $\psi = 2x^2y$ and $B(0,2)$ is:	$+(x+1)y^2$. The	e flow rate across a line joining points	
	(A)	0.4 units	(B)	1.1 units	
	(C)	4 units	(D)	5 units	
14.	The scale	ratio of discharge per unit wid	th as per Frou	de's model law is :	
	(A)	$\sqrt{L_r}$	(B)	Lr^2	
	(C)	$Lr^{5/2}$	(D)	$Lr^{3/2}$	
083	/2024		4	\mathbf{A}	

15.	140 days wheat of	base period and	d having a delta of 140 cm. days and having delta of 5	ds of 1000 ha of land growing rice of If the canal water is used to irrigate 50 cm, determine the area that can be
	(A)	930 ha	(B)	1000 ha
	(C)	2400 ha	(D)	3470 ha
16.			f flow is in power law range ndary layer thickness in turb	and x is the distance from the leading ulent flow varies as:

- - (B)
 - (D)
- **17.** The ratio of curved length of the river to its direct axial length is called:
 - (A) Meander ratio (B) Tortuosity
 - Crossing (C) Sinuosity (D)
- 18. Bed width (b) and flow depth (y) of the most economical trapezoidal canal can be related as:
 - (B) $b = \frac{2y}{\sqrt{3}}$ (D) $b = \frac{3y}{\sqrt{2}}$
- The possible form of water surface profile over a free overfall is
 - M1(B) **M**3 (A)
 - S2(C) S3(D)
- 20. A vertical triangular plane area submerged in water with base in the free surface, vertex downward and altitude h. The position of centre of pressure below the free surface is:
 - h/3(A) h/2(B) (C) 2h/3(D) 5h/6
- 21. The distance between two points marked on a plan drawn to a scale of 1 cm = 10 m was found to be 100 m. Later it was found that wrong scale of 1 cm = 5 m was used for measurement. If the measured area is 120 m², what will be the correct length and correct area?
 - 100 m and 240 m² 200 m and 480 m² (B)
 - (C) 75 m and 240 m² (D) 150 m and 480 m²

22. In a survey done on an area, the following offsets were taken from a survey line to the boundary of the field. Compute the area between the boundary and survey line, using trapezoidal method.

Distance in m	0	5	10	15	20	30	40
Offsets in m	4	6.5	8.5	9	12	16	9

(A) 425 m^2

(B) 400 m^2

(C) 160 m²

- (D) 500 m²
- 23. A traverse is in the shape of a regular hexagon named as PQRSTUP. If the bearing of the side PQ of the traverse PQRSTUP is 40°, what is the bearing of the adjacent side QR of the traverse?

(C) 100°

(A)

24. Consider the following statements:

 120^{0}

- 1. The correction due to refraction is 1/8th of that due to curvature but opposite in nature.
- 2. The permissible closing error in ordinary level is 12 seconds.
- 3. MSL at a place is the average datum of the hourly tidal height observed over a period of 19 years
- 4. In a dumpy level, the sensitivity of the level tube is generally 20" per mm.

Which of the following statements are correct?

(A) 1, 2 and 3

(B) 1, 3 and 4

(C) 3 and 4

- (D) 1 and 2
- **25.** The statistical measure, which deals with the attributes and locations of spatial features, which is used to measure the spatial ordering in a spatial distribution is :
 - (A) Spatial Correlation

(B) Spatial Autocorrelation

(C) Spatial Variance

(D) Spatial Covariance

26.	6. It is estimated that the life of a building is 50 years and it will have a scrap value of 10% of the cost of construction. If the depreciation is calculated using the straight-line method, find the present value of a building constructed 40 years before at a cost of Rs. 1,00,000:			
	(A)	Rs. 25,000	(B)	Rs. 30,000
	(C)	Rs. 45,000	(D)	Rs. 28,000
27.		bsence of detailed drawings, approximately on the percenta	_	ge of steel reinforcement is usually
	(A)	Height of building	(B)	Brickwork
	(C)	Size of bending	(D)	Concrete
28.		aving a size of $4m \times 5m$ with 20 the walls by centre line method?		all around. What is the estimate of the
	(A)	12 m	(B)	15.8 m
	(C)	18.8 m	(D)	20 m
29.	The carpe	t area of a residential building i	s generally —	of its plinth area.
	(A)	80% - 95%	(B)	50% - 65%
	(C)	<mark>65%</mark> - 80%	(D)	35% - 50%
30.	" <mark>Courtyar</mark>	d" not considered in which of th	e following es	etimates?
	(A)	Cube rate estimate	(B)	Unit rate estimate
	(C)	Lump sum estimate	(D)	Plinth area estimate
31.	What is th	ne method to enhance the fire re	sistance of ti	MPETITIVE EXAMS mber?
0 _ 0	(A)	Seasoning		
	(B)	Coating with tar paint		
	(C)	Soaking in ammonium sulphat	te	
	, ,	Pumping creosote oil under hig		
32.		he fineness modulus of combine		8 and 2.5 respectively. If the economic s 6, then what is the proportion of fine
	(A)	17.5%	(B)	33.33%
	(C)	57.14%	(D)	42.86%
33.		the quantities of cement (in cubic metre of wet cement mort		sand (in m³) respectively required to oportion?
	(A)	270 and 1.00	(B)	270 and 1.04
	(C)	374 and 1.00	(D)	374 and 1.04
A			7	083/2024 [P.T.O.]

083/2	2024				8			A
		(C)	II, III and IV only			(D)	I, II and IV only	
		(A)	I, II and III only			(B)	II, IV only	
	IV.	The	slump value of concr	ete used	for tre	ench fillin	g should be 100 to 150 mm.	
	III.	As t	he slump increases, t	he compa	action	factor inc	creases.	
	II.	Segn	regation indicates po	or aggreg	ate gr	ading.		
	I.	Blee	eding indicates the de	eficiency o	of coar	se materi	ial in the mix.	
38.	Choo	se th	e correct statement f	rom the f	ollowi	ing:		
		(C)	$231~\mathrm{m}^3$			(D)	126 m^3	
		(A)	$63~\mathrm{m}^3$			(B)	124 m^3	
37 .	Wha	t is th	ne volume of coarse a	ggregate	requi	red to ma	ke 150 m ³ of 1 : 1.5 : 3 concrete?	
		(D)	(a)-(i), (b)-(iv), (c)-(i					
		(C)	(a)-(ii), (b)-(i), (c)-(iv					
		(B)						
	(5)	(A)	(a)-(ii), (b)-(i), (c)-(ii	i) (d)-(iv)	, ,		F 3 3.55	
	(d)		entraining agents		(iv)		um powder	
	(c)		perplasticizers		(iii)		ated melanin formaldehyde	
	(b)	Ret	arders		(ii)		Chloride	
	(a)	Acc	elerators		(i)	Calcium	Sulphate	
		Adı	nixtures			Chemica	als	
36.	Mate	h the	e following list of adn	nixtures v	vith th	neir corre	ct Chemicals :	
		(C)	Phosphorous			(D)	Vanadium	
		(A)	Sulphur			(B)	Carbon	
35.	The :	yield	point of low-carbon s	teel may	be inc	reased by	y the addition of :	
		(C)	1 and 3 only			(D)	1, 3 and 4 only	
		(A)	1, 2 and 3 only			(B)	1, 2, 3 and 4	
	4.		ition of sawdust in ce	ement mo	rtar iı	•	·	
		road						
	3.			_			amp-proof courses and cement con	-
	2.	Gauging is the process of adding cement to lime mortar in order to improve its quality.						litv.
	1.	Add	ition of lime increase	s the wor	kabili	ty of ceme	ent mortar.	

Choose the correct statement/statements from the following:

34.

39.	Choo	se th	e statement/statements which is not co	rrect	from the following:			
	1.	Venetian arch is an example of four centered arch.						
	2.	_	ndril is the triangular portion between r crowns.	any 1	two adjacent arches and the tangent to			
	3.	Lint		hich i	is used to support masonry above in an			
	4.	Intra	ados is the inner surface of the arch.					
		(A)	1, 3 and 4 only	(B)	1 and 2 only			
		(C)	4 only	(D)	1 only			
40.	In a s	single	e joist timber floor, the timber planking	is fix	ted over :			
		(A)	Furring piece	(B)	Strutting			
		(C)	Bridging joist	(D)	Binders			
41.	Whic	h is t	the IS code used for building design and	d erec	tion using prefabricated concrete?			
		(A)	IS 15913 – 2011	(B)	IS 15914 – 2011			
		(C)	IS 15915 – 2011	(D)	IS 15916 – 2011			
42.	Choo	se th	e statement which is not true from the	follow	ving:			
		(A)			structures as well as for horizontal			
		(B)	Slip-form construction does not requir	e a cr	rane			
		(C)	Installation time for slip form techniq	ue is	less PETITIVE EXAMS			
		(D)		p for	m minimises the use of cranes as it is			
43.	If on deper			t line	e in a tension member, then its failure			
		(A)	Pitch	(B)	Gauge			
		(C)	Diameter of the rivet holes	(D)	All the above			
44.	Whic	h of t	the following is true?					
		(A)	The principles of management are in	a cont	tinuous process of evolution			
		(B)	B) Material Management refers to the process of planning, executing, directing, coordinating, monitoring and controlling of all the processes that are associated with the materials required in the industries					
		(C)	Skilful and hard-poised negotiation is one of the basic principles of material management					
		(D)	All of the above					
A			9		083/2024 [P.T.O.]			

45 .		nber subjected to traverse cipal rafter is:	load spanning on th	ne roof frame connecting common rafter
	(A)	Tie beam	(B)	Purlins
	(C)	Valley rafters	(D)	Battens
46.	What is	the correct sequence of pro	cess for the constru	ction of bored pile?
	1. A v	rertical hole is drilled into	the soil using the bo	ore piling machine.
	2. The	e hole is filled with concret	se.	
	3. A t	emporary steel cylinder or	sleeve is inserted in	nto the drilled hole.
	4. A r	ebar cage for the pile is in:	serted into the hole	and, subsequently.
	5. The	e top of the pile is capped o	either with a footing	g or a pile cap near the ground level.
	(A)	1, 3, 2, 4, 5	(B)	1, 3, 4, 2, 5
	(C)	1, 2, 3, 4, 5	(D)	1, 4, 3, 2, 5
47.	The proc	ess in which a neutral thir	d party gives a deci	sion on a dispute is known as :
	(A)		(B)	Litigation
	(C)		(D)	Adjudication
48.	What is	<mark>the purpose of seasoning o</mark>	f timber for use in c	onstruction?
	(A)	To remove knots from ti	mber logs	
	(B) (C)	To increase its strength To smoothen the timber	and durability surface	
	(D)			
49.	The rela	tion between the strength	of brick masonry	f_w , the strength of bricks f_b , and the
	strength	of mortar f_m is given by w	hich of the following	g equation?
	$(k_w \text{ is co})$	efficient based on layout o	f the bricks and the	joints)
	(A)	$\sqrt{k_wrac{f_b}{f_m}}$	(B)	$k_w rac{f_b}{f_m} \ k_w \sqrt{f_b f_m}$
		$V = I_m$		f_m
	(C)	$\sqrt{k_w f_b f_m}$	(D)	$k_w \sqrt{f_b f_m}$
50.	The cons	struction of a temporary s	tructure built to su	apport an unsafe structure vertically is
	(A)	Underpinning	(B)	Scaffolding
	(C)	Shoring	(D)	Jacking

51.		verage water consumption of a city is 250 lpcd and its population is 3,00,000, the m hourly draft of the maximum day and maximum daily draft will be:				
	(A)	$120.5~\mathrm{MLD}$ and $216~\mathrm{MLD}$	(B)	1216.5 MLD and 324 MLD		
	(C)	202.5 MLD and 135 MLD	(D)	None of these		
52.	In networ	k of pipes :				
	(A)	The algebraic sum of discharge	es around eac	h circuit is zero		
	(B)	The algebraic sum of head loss	es around ea	ch circuit is zero		
	(C)	The elevation of hydraulic grad	le line is assu	amed for each junction point		
	(D)	Elementary circuits are replace	ed by equival	ent pipes		
53.	their ions	_		ter sample are 150 mg/l and 20 mg/l as er sample in terms of CaCO3 in mg/l is		
	(A)	120	(B)	200		
	(C)	267	(D)	458		
54.	containing		olume of 200	ed solids one litre of activated sludge omL after settling for 30 minutes in a 100		
	C)	R ₂₀₀ FOR CIVIL EN	GG (D)	400 ETITIVE EXAMS		
55.		ce which can be used to cont lemissions is known as:	rol gaseous	as well as particulate pollutants in		
	(A)	Spray Towers	(B)	Cyclonic Separators		
	(C)	Fabric Filters	(D)	Electrostatic Precipitators		
56.		water sample of 3 mL is made O of the sample is 7 mg/L and aft	-	L in BOD bottle with distilled water. s 3 mg/L. What is its BOD?		
	(A)	894 mg/L	(B)	400 mg/L		
	(C)	300 mg/L	(D)	1200 mg/L		
57.	The phene	olic compounds in public water s	upply should	not be more than:		
	(A)	0.1 ppm	(B)	0.01 ppm		
	(C)	0.001 ppm	(D)	0.0001 ppm		
A			11	083/2024 [P.T.O.]		

58.	At a sewa be about :	age treatment plant for a flow of 3 m $^3/\mathrm{s}$, the cross sectional area of grit chamber will :			
	(A)	$3~\mathrm{m}^2$	(B)	10 m^2	
	(C)	100 m^2	(D)	$150~\mathrm{m}^2$	
59.	What is t		tion mechanism fo	r raw water having high turbidity and	
	(A)	Ionic layer compression	(B)	Adsorption and charge neutralisation	
	(C)	Sweep coagulation	(D)	Inter particle bridging	
60.		contact is 0.15 mg/l. Th		ater per day is 8 kg. The residual after e and demand of water in mg/l are	
	(A)	2.5 and 0.38	(B)	2.5 and 2.35	
	(C)	0.53 and 0.25	(D)	0.53 and 0.38	
61.	Choose th	ne correct statement :			
	(A)	Failure of a balanced sec	tion will be initiate	ed by yielding of steel	
	(B)	Failure of a balanced sec	tion will be initiate	ed by crushing of concrete	
	(C)	Both the statements are	correct		
	(D)	None of the statements a			
62.	A two-wa	y slab is present at an in	termediate floor of	an RC framed structure. In that slab	
	_	lifting of corners occur d	ue to torsional mon	nents in the slab	
	(B)	lifting of corners occur d	ue to unbalanced m	noments in the slab	
	(C)	no lifting occurs			
	(D)	lifting will occur initially	, which subsides la	ter	
63.	_	S 456 : 2000, the maximuall not be less than :	m strain in the te	ension reinforcement in the section at	
	(A)	fy/1.15Es	(B)	0.002 + fy/1.15Es	
	(C)	0.002 + fy/1.5Es	(D)	0.002 + fy/Es	
083	/2024		12	${f A}$	

64.	overall de	An isolated concrete footing is to be built to support a column. The footing has 500 mm overall depth and 75 mm effective cover. Where is the location of critical section for greates bending moment?						
	(A)	(A) At a distance 500 mm from the face of the column						
	(B)	At a distance 425 from the face	of the colum	nn				
	(C)	At the face of the column						
	(D)	At a distance 850 mm from the	face of the c	olumn				
65.	5. In a beam member, cracks are noticed parallel to the main reinforcement. What is the reas for the cracks?							
	(A)	Excess bending	(B)	Shear failure				
	(C)	Corrosion	(D)	Torsional failure				
66.	_	and stress of high strength deformable 2000 is:	med bars in	tension used in M30 grade concrete as				
	(A)	1.2 MPa	(B)	1.92 MPa				
	(C)	1.5 MPa	(D)	2.4 MPa				
67 .	For a con	tinuous deep beam, the ratio of		an to overall depth ratio should be less				
	(A)	2	(B)	2.5				
	(C)		(D)					
68.	_	ssed concrete bridge is proposed What is the minimum grade of o		n a site which belongs to mild exposure e used in that project?				
	(A)	M20	(B)	M25				
	(C)	M30	(D)	M35				
69.	immediat			ensioning, the maximum tensile stress d of the ultimate tensile				
	(A)	75%	(B)	76%				
	(C)	80%	(D)	50%				
A			13	083/2024 [P.T.O.]				

70. A pre tensioned concrete beam of rectangular cross section, 150 mm wide and 400 mm deep is prestressed with 5 prestressing wires of 10 mm diameter located at 100 mm from the soffit of the beam. If the wires are stressed to a prestressing force of 600 kN, what is the percentage loss of stress due to elastic deformation:

Take modulus of elasticity of concrete = 25 kN/mm² and that of steel = 200 kN/mm²

(A) 200 N/mm^2

(B) 140 N/mm^2

(C) 50 N/mm²

- (D) None of these
- 71. A prestressed concrete beam is post tensioned by a cable carrying an initial stress of 1400 N/mm². The slip happened at the jacketing end is 15 mm. The modulus of elasticity of steel is 210 kN/mm². What is the % loss due to anchorage slip if the length of the beam is 15 m?
 - (A) 21%

(B) 30%

(C) 15%

(D) No loss

- **72.** Choose the correct statement(s):
 - Statement 1: Concentric tendons in a prestressed concrete beam section induces uniform compressive stress
 - Statement 2: Eccentric tendons in a prestressed concrete beam section induces both direct and bending stresses
 - (A) Statement 1 is correct; Statement 2 is incorrect
 - (B) Statement 2 is correct; Statement 1 is incorrect
 - (C) Both statements are correct
 - (D) Both statements are incorrect

73. For a steel compression member of length L, following are the boundary conditions:

End	Translation	Rotation
1	restrained	restrained
2	free	restrained

What is the effective length of that member?

(A) 2 L

(B) L

(C) 1.2 L

(D) 0.8 L

74. Following statements are written based on the clauses on limit state of collapse: compression in IS 456: 2000:

Choose the correct statement(s).

- Statement 1: The maximum compressive strain in concrete in axial compression is taken as 0.002.
- Statement 2: The maximum compressive strain at the highly compressed extreme fibre in concrete subjected to axial compression and bending and when there is no tension on the section shall be 0.0035 minus 0.85 times the strain at the least compressed extreme fibre.
 - (A) Statement 1 is correct
 - (B) Statement 2 is correct
 - (C) Both statements 1 and 2 are correct
 - (D) Both statements 1 and 2 are incorrect
- **75.** In the interaction diagram for columns subjected to uni axial compression, the point in which the curve meets the y axis represents :
 - (A) Pure axial compression
 - (B) Axial loading with minimum eccentricity
 - (C) Pure bending condition
 - (D) Balanced failure condition
- **76.** As per IS 456 : 2000, the permissible bearing stress of M25 grade concrete to be used in limit state method of design is :
 - (A) 6.25 N/mm²

(B) 11.25 N/mm²

(C) 12.5 N/mm²

(D) 25 N/mm²

- 77. The torsion induced by an eccentric loading with respect to the shear centre at any cross section of a reinforced concrete member is known as:
 - (A) Primary torsion

(B) Secondary torsion

(C) Tertiary torsion

(D) Compatibility torsion

- **78.** Choose the correct statement(s):
 - Statement 1: In Limit state method of design, the aim of design is to achieve acceptable probabilities that the structure will not become unfit for the use for which it is intended.
 - Statement 2: In Limit state method of design, the aim of design is to achieve acceptable probabilities that the structure will not reach a limit state.
 - (A) Statement 1 alone

(B) Statement 2 alone

(C) Both Statements 1 and 2 are correct

(D) None of the statements are correct

79.	The design capacity of a weld is reduced when:						
	(A)	(A) Length of the welded joint is equal to the throat diameter					
	(B)	Length of the welded joint is greater than 10 times the throat diameter					
	(C)	Length of the welded joint is greater than 100 times the throat diameter					
	(D)	Length of the welded joint is greater than 150 times the throat diameter					
80.	As per IS 800 : 2007, earth quake loads are classified as						
	(A)	Permanent actions	(B)	Variable actions			
	(C)	Accidental actions	(D)	None of these			
81.	For a soil sample if the volume of water in the voids is same as volume of soil solids and volume of air voids is half the volume of water in the voids, the degree of saturation will be:						
	(A)	50%	(B)	40%			
	(C)	66.66%	(D)	None of these			
82.	are respec	<mark>ctively:</mark> The bottom of lake cons	sists of soft cla	m below the bottom of a lake 3 m deep y with saturated unit weight 18 kN/m³ water may be taken as 10 kN/m³: 120 and 40 30 and 0			
83.	subjected	_	Γhe sample fa	and angle of internal friction 20° is iled when the deviator stress reached eaxis of sample will be: 45° 10°			
84.	A clay stratum 2 m thick will reach its 60% consolidation settlement in 10 years. What will be the time required for the same clay to attain same degree of consolidation if it is 6 m thick under similar drainage conditions:						
	(A)	30 years	(B)	44 years			
	(C)	66 years	(D)	90 years			
85.	A sample of saturated soil has 40% water content and specific gravity of soil grains is The dry density of soil mass in kN/m^3 is :						
	(A)	12.9	(B)	14.7			
	(C)	18.2	(D)	19.2			
083/	2024		16	A			

86.	The influence of each area unit in calculating the stresses below a loaded area of any shape using Newmark's chart with 10 circles and 20 radial lines:					
	(A)	0.05	(B)	0.002		
	(C)	0.02	(D)	0.005		
87.	What will be the critical height of the slope in a soil with $c=25$ kN/m ² and $\gamma=20$ kN/m ³ if the stability number is 0.1?					
	(A)	12.5 m	(B)	8 m		
	(C)	1.25 m	(D)	0.125 m		
88.	Minimum depth of foundation required to carry a load intensity of $120~kN/m^2$ in a cohesionless soil of unit weight $16~kN/m^3$ and angle of internal friction 30° is :					
	(A)	1.2 m	(B)	0.83 m		
	(C)	2.5 m	(D)	0.4 m		
89.	In SPT test conducted in a stratum of fine sand and silt below water table, dilatancy correction is applied for values of N greater than:					
	(A)	12	(B)	15		
	(C)	20	(D)	50		
90.	Terzaghi's bearing capacity factor for a strip footing in purely cohesive soil is:					
	(A)	R5.14FOR CIVIL E		13PETITIVE EXAMS		
	(C)	5.7	(D)	5.17		
91.		nmended maximum value of				
	(A)	8%	(B)	7%		
	(C)	10%	(D)	12%		
92.	For Indian Railways, vertical curves are provided at junctions of grades when algebraic difference between the grades is equal to more than:					
	(A)	0.5%	(B)	0.4%		
	(C)	1%	(D)	0.1%		
93.	The component of airport used for servicing and repair of aircrafts is:					
	(A)	Hanger	(B)	Apron		
	(C)	Holding apron	(D)	Terminal building		
A			17	083/2024 [P.T.O.]		

94.	Calm period is the percentage of time during which wind intensity in an airport is less than:						
	(A)	4.8 kmph		(B)	4.6 kmph		
	(C)	7.4 kmph		(D)	6.4 kmph		
95.	According to IRC, the maximum permissible stripping value of aggregates to be used in bituminous construction is :						
	(A)	5%		(B)	12%		
	(C)	25%		(D)	45%		
96.	The total number of potential conflict points at a right angled two-lane road intersection with two way traffic is :						
	(A)	6		(B)	9		
	(C)	16		(D)	24		
97.	The mean free flow speed along a single lane highway is 80 kmph. Under stopped condition, the average space headway between vehicles is observed as 5 m. The capacity of the highway is equal to:						
	(A)	2000 veh/hour		(B)	4000 veh/hour		
	(C)	1000 veh/hour		(D)	2500 veh/hour		
98.	To prepar	To prepare rapid curing cutback, the solvent to be used is:					
	(A)	Gasoline		(B)	Kerosene oil		
	(C)	Light diesel oil		(D)	Heavy diesel oil		
		<u> </u>		` /			
99.	The average normal flow on cross roads A and B during design period are 1000 and 250 pcu/hour. The saturation flow values on these roads are estimated as 2000 and 1000 pcu/hour respectively. The all-red time required for passengers is 10 seconds. The						
	•		o phase signal is equa				
	(A)	$100 \; \mathrm{sec}$		(B)	120 sec		
	(C)	110 sec		(D)	104 sec		
100.	Which of the following is considered as highest quality construction in case of black topped pavements?						
	(A)	Mastic asphalt		(B)	Bituminous macadam		
	(C)	Bituminous conc	rete	(D)	Premix carpet		

SPACE FOR ROUGH WORK

CENTRE FOR CIVIL ENGG. COMPETITIVE EXAMS

GATE · AE · JE-CIVIL

SPACE FOR ROUGH WORK

CENTRE FOR CIVIL ENGG. COMPETITIVE EXAMS

GATE · AE · JE-CIVIL